3,132
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Poloxamer sols endowed with in-situ gelability and mucoadhesion by adding hypromellose and hyaluronan for prolonging corneal retention and drug delivery

, , , , , & show all
Article: 2158964 | Received 07 Oct 2022, Accepted 11 Dec 2022, Published online: 01 Jan 2023

References

  • Akpek EK, Amescua G, Farid M, et al. (2019). Dry eye syndrome preferred practice Pattern®. Ophthalmology 126:1–17.
  • Al Khateb K, Ozhmukhametova EK, Mussin MN, et al. (2016). In-situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery. Int J Pharm 502:70–9.
  • Almeida H, Amaral MH, Lobão P, Sousa Lobo JM. (2013). Applications of poloxamers in ophthalmic pharmaceutical formulations: an overview. Expert Opin Drug Deliv 10:1223–37.
  • Balguri SP, Adelli GR, Majumdar S. (2016). Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues. Eur J Pharm Biopharm 109:224–35.
  • Bourlais CL, Acar L, Zia H, et al. (1998). Ophthalmic drug delivery systems–recent advances. Prog Retin Eye Res 17:33–58.
  • Cave RA, Cook JP, Connon CJ, Khutoryanskiy VV. (2012). A flow system for the on-line quantitative measurement of the retention of dosage forms on biological surfaces using spectroscopy and image analysis. Int J Pharm 428:96–102.
  • Cook MT, Smith SL, Khutoryanskiy VV. (2015). Novel glycopolymer hydrogels as mucosa-mimetic materials to reduce animal testing. Chem Commun (Camb) 51:14447–50.
  • Dawson TL. (2015). Testosterone eye drops: A novel treatment for dry eye disease. Ophthalmology Times, Nov. 15.
  • Destruel PL, Zeng N, Seguin J, et al. (2020). Novel in-situ gelling ophthalmic drug delivery system based on gellan gum and hydroxyethylcellulose: innovative rheological characterization, in vitro and in vivo evidence of a sustained precorneal retention time. Int J Pharm 574:1181734.
  • Dodero A, Williams R, Gagliardi S, et al. (2019). A micro-rheological and rheological study of biopolymers solutions: hyaluronic acid. Carbohydr Polym 203:349–55.
  • Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. (2006). A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res 23:2709–28.
  • Escobar-Chávez JJ, López-Cervantes M, Naïk A, et al. (2006). Applications of thermo-reversible Pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharm Sci 9:339–58.
  • Fathalla ZM, Khaled KA, Hussein AK, et al. (2016). Formulation and corneal permeation of ketorolac tromethamine-loaded chitosan nanoparticles. Drug Dev Ind Pharm 42:514–24.
  • Furrer P, Plazonnet B, Mayer JM, Gurny R. (2000). Application of in vivo confocal microscopy to the objective evaluation of ocular irritation induced by surfactants. Int J Pharm 207:89–98.
  • Gugleva V, Titeva S, Ermenlieva N, et al. (2020). Development and evaluation of doxycycline niosomal thermoresponsive in-situ gel for ophthalmic delivery. Int J Pharm 591:120010.
  • He Y, Li J, Zhu J, et al. (2017). The improvement of dry eye after cataract surgery by intraoperative using ophthalmic viscosurgical devices on the surface of cornea: the results of a consort-compliant randomized controlled trial. Medicine (Baltimore) ), 96:e8940.
  • Hyun K, Kim SH, Ahn KH, Lee SJ. (2002). Large amplitude oscillatory shear as a way to classify the complex fluids. Non-Newton Fluid Mech 107:51–65.
  • Hyun K, Nam JG, Wilhellm M, et al. (2006). Large amplitude oscillatory shear behavior of PEO-PPO-PEO triblock copolymer solutions. Rheol Acta 45:239–49.
  • Jansen T, Xhonneux B, Mesens J, Borgers M. (1990). Beta-cyclodextrins as vehicles in eye-drop formulations: an evaluation of their effects on rabbit corneal epithelium. Lens Eye Toxic Res 7:459–68.
  • Jansook P, Ogawa N, Loftsson T. (2018). Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int J Pharm 535:272–84.
  • Jung YS, Park W, Park H, et al. (2017). Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic F-127 for sustained NSAID delivery. Carbohydr Polym 156:403–8.
  • Kesavan K, Nath G, Pandit J. (2010). Preparation and in vitro antibacterial evaluation of gatifloxacin mucoadhesive gellan system. Daru 18:237–46.
  • Lemp MA, Crews LA, Bron AJ, et al. (2012). Distribution of aqueous-deficient and evaporative dry eye in a clinic-based patient cohort: a retrospective study. Cornea 31:472–8.
  • Li X, Hyun K. (2018). Rheological study of the effect of polyethylene oxide (PEO) homopolymer on the gelation of PEO-PPO-PEO triblock copolymer in aqueous solution. Korea-Aust Rheol J 30:109–25.
  • Li X, Park E, Hyun K, et al. (2018). Rheological analysis of core-stabilized Pluronic F127 by semi-interpenetrating network (sIPN) in aqueous solution. J Rheol 62:107–20.
  • Ohlander SJ, Lindgren MC, Lipshultz LI. (2016). Testosterone and male infertility. Urol Clin North Am 43:195–202.
  • Ruel-Gariépy E, Leroux JC. (2004). In-situ-forming hydrogels–review of temperature-sensitive systems. Eur J Pharm Biopharm 58:409–26.
  • Ruppert SM, Hawn TR, Arrigoni A, et al. (2014). Tissue integrity signals communicated by high-molecular weight hyaluronan and the resolution of inflammation. Immunol Res 58:186–92.
  • Russo E, Villa C. (2019). Poloxamer hydrogels for biomedical applications. Pharmaceutics 11:671.
  • Salwowska NM, Bebenek KA, Żądło DA, Wcisło-Dziadecka DL. (2016). Physiochemical properties and application of hyaluronic acid: a systematic review. J Cosmet Dermatol 15:520–6.
  • Seftel AD. (2015). Re: testosterone products: drug safety communication – FDA cautions about using testosterone products for low testosterone due to aging; requires labeling change to inform of possible increased risk of heart attack and stroke. J Urol 194:759–60.
  • Shastri D, Patel L, Parikh R. (2010). Studies on in-situ hydrogel: a smart way for safe and sustained ocular drug delivery. J Young Pharm 2:116–20.
  • Sudha PN, Rose MH. (2014). Beneficial effects of hyaluronic acid. Adv Food Nutr Res 72:137–76.
  • Sullivan DA, Sullivan BD, Evans JE, et al. (2002). Androgen deficiency, Meibomian gland dysfunction, and evaporative dry eye. Ann N Y Acad Sci 966:211–22.
  • Supalaset S, Tananuvat N, Pongsatha S, et al. (2019). A randomized controlled double-masked study of transdermal androgen in dry eye patients associated with androgen deficiency. Am J Ophthalmol 197:136–44.
  • Tan G, Li J, Song Y, et al. (2019). Phenylboronic acid-tethered chondroitin sulfate-based mucoadhesive nanostructured lipid carriers for the treatment of dry eye syndrome. Acta Biomater 99:350–62.
  • Toda I, Shinozaki N, Tsubota K. (1996). Hydroxypropyl methylcellulose for the treatment of severe dry eye associated with Sjögren’s syndrome. Cornea 15:120–8.
  • Tundisi LL, Mostaço GB, Carricondo PC, Petri DFS. (2021). Hydroxypropyl methylcellulose: physicochemical properties and ocular drug delivery formulations. Eur J Pharm Sci 159:105736.
  • Wang Y, Toor SS, Gautam R, Henson DB. (2011). Blink frequency and duration during perimetry and their relationship to test-retest threshold variability. Invest Ophthalmol Vis Sci 52:4546–50.
  • Wang L, Deng Y. (2020). The applications of androgen in the treatment of dry eye disease: a systematic review of clinical studies. Endocr J 67:893–902.
  • Wei Y, Li C, Zhu Q, et al. (2020). Comparison of thermosensitive in-situ gels and drug-resin complex for ocular drug delivery: in vitro drug release and in vivo tissue distribution. Int J Pharm 578:119184.
  • Wu Y, Liu Y, L, X, Kebebe, et al. (2019). Research progress of in-situ gelling ophthalmic drug delivery system. Asian J Pharm Sci 14:1–15.
  • Yadav VK, Gupta A, Kumar R, et al. (2010). Mucoadhesive polymers: means of improving the mucoadhesive properties of drug delivery system. J Chem Pharm Res 2:418–32.
  • Yamaguchi T. (2018). Inflammatory response in dry eye. Invest Ophthalmol Vis Sci 59:Des192–Des199.
  • Yang YJ, Lee WY, Kim YJ, Hong YP. (2021). A meta-analysis of the efficacy of hyaluronic acid eye drops for the treatment of dry eye syndrome. IJERPH 18:2383.
  • You IC, Li Y, Jin R, et al. (2018). Comparison of 0.1%, 0.18%, and 0.3% hyaluronic acid eye drops in the treatment of experimental dry eye. J Ocul Pharmacol Ther 34:557–64.
  • Zhu H, Chauhan A. (2008). Effect of viscosity on tear drainage and ocular residence time. Optom Vis Sci 85:715–25.