3,619
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Targeted drug delivery strategy: a bridge to the therapy of diabetic kidney disease

, , , , &
Article: 2160518 | Received 27 Oct 2022, Accepted 12 Dec 2022, Published online: 28 Dec 2022

References

  • Ahangarpour A, Oroojan AA, Khorsandi L, et al. (2019). Antioxidant, anti-apoptotic, and protective effects of myricitrin and its solid lipid nanoparticle on streptozotocin-nicotinamide-induced diabetic nephropathy in type 2 diabetic male mice. Iran J Basic Med Sci 22:1–11.
  • Albert A. (1958). Chemical aspects of selective toxicity. Nature 182:421–2.
  • Alomari G, Al-Trad B, Hamdan S, et al. (2020). Gold nanoparticles attenuate albuminuria by inhibiting podocyte injury in a rat model of diabetic nephropathy. Drug Deliv Transl Res 10:216–26.
  • Araujo F, Shrestha N, Gomes MJ, et al. (2016). In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy. Nanoscale 8:10706–13.
  • Asgeirsdottir SA, Zwiers PJ, Morselt HW, et al. (2008). Inhibition of proinflammatory genes in anti-GBM glomerulonephritis by targeted dexamethasone-loaded AbEsel liposomes. Am J Physiol Renal Physiol 294:F554–561.
  • Ashique S, Sandhu NK, Chawla V, Chawla PA. (2021). Targeted drug delivery: trends and perspectives. Curr Drug Deliv 18:1435–55.
  • Barrera-Chimal J, Lima-Posada I, Bakris GL, Jaisser F. (2022). Mineralocorticoid receptor antagonists in diabetic kidney disease - mechanistic and therapeutic effects. Nat Rev Nephrol 18:56–70.
  • Barro L, Hsiao JT, Chen CY, et al. (2021). Cytoprotective effect of liposomal puerarin on high glucose-induced injury in rat mesangial cells. Antioxidants (Basel) 10:1177.
  • Berillo D, Yeskendir A, Zharkinbekov Z, et al. (2021). Peptide-based drug delivery systems. Medicina (Kaunas) 57:1209.
  • Blanco E, Shen H, Ferrari M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–51.
  • Brosius FC, Tuttle KR, Kretzler M. (2016). JAK inhibition in the treatment of diabetic kidney disease. Diabetologia 59:1624–7.
  • Byrne JD, Betancourt T, Brannon-Peppas L. (2008). Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60:1615–26.
  • Chauhan VP, Popovic Z, Chen O, et al. (2011). Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew Chem Int Ed Engl 50:11417–20.
  • Chen D, Han S, Zhu Y, et al. (2018). Kidney-targeted drug delivery via rhein-loaded polyethyleneglycol-co-polycaprolactone-co-polyethylenimine nanoparticles for diabetic nephropathy therapy. Int J Nanomed 13:3507–27.
  • Chen Z, Peng H, Zhang C. (2020a). Advances in kidney-targeted drug delivery systems. Int J Pharm 587:119679.
  • Chen Z, Li W, Shi L, et al. (2020b). Kidney-targeted astaxanthin natural antioxidant nanosystem for diabetic nephropathy therapy. Eur J Pharm Biopharm 156:143–54.
  • Choi CH, Zuckerman JE, Webster P, Davis ME. (2011). Targeting kidney mesangium by nanoparticles of defined size. Proc Natl Acad Sci U S A 108:6656–61.
  • Christensen EI, Birn H, Storm T, et al. (2012). Endocytic receptors in the renal proximal tubule. Physiology (Bethesda) 27:223–36.
  • Comai G, Malvi D, Angeletti A, et al. (2019). Histological evidence of diabetic kidney disease precede clinical diagnosis. Am J Nephrol 50:29–36.
  • Dai Q, Chen N, Zeng L, et al. (2021). Clinical features of and risk factors for normoalbuminuric diabetic kidney disease in hospitalized patients with type 2 diabetes mellitus: a retrospective cross-sectional study. BMC Endocr Disord 21:104.
  • Dai W, Lu H, Chen Y, et al. (2021). The loss of mitochondrial quality control in diabetic kidney disease. Front Cell Dev Biol 9:706832.
  • Dalwadi C, Patel G. (2015). Application of nanohydrogels in drug delivery systems: recent patents review. Recent Pat Nanotechnol 9:17–25.
  • DeFronzo RA, Reeves WB, Awad AS. (2021). Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nat Rev Nephrol 17:319–34.
  • Deshayes S, Morris MC, Divita G, Heitz F. (2005). Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell Mol Life Sci 62:1839–49.
  • Dou L, Jourde-Chiche N. (2019). Endothelial toxicity of high glucose and its by-products in diabetic kidney disease. Toxins (Basel) 11:578.
  • D’Souza B, Bhowmik T, Uddin MN, et al. (2015). Development of beta-cyclodextrin-based sustained release microparticles for oral insulin delivery. Drug Dev Ind Pharm 41:1288–93.
  • Duan S, Lu F, Song D, et al. (2021). Current challenges and future perspectives of renal tubular dysfunction in diabetic kidney disease. Front Endocrinol (Lausanne) 12:661185.
  • Ebrahim N, Ahmed IA, Hussien NI, et al. (2018). Mesenchymal stem cell-derived exosomes ameliorated diabetic nephropathy by autophagy induction through the mTOR signaling pathway. Cells 7:226.
  • El Mokadem M, Abd El Hady Y, Aziz A. (2020). A prospective single-blind randomized trial of ramipril, eplerenone and their combination in type 2 diabetic nephropathy. Cardiorenal Med 10:392–401.
  • Farshbaf M, Davaran S, Zarebkohan A, et al. (2018). Significant role of cationic polymers in drug delivery systems. Artif Cells Nanomed Biotechnol 46:1872–91.
  • Fleischmann D, Harloff M, Figueroa SM, et al. (2021). Targeted delivery of soluble guanylate cyclase (sGC) activator cinaciguat to renal mesangial cells via virus-mimetic nanoparticles potentiates anti-fibrotic effects by cGMP-mediated suppression of the TGF-beta pathway. Int J Mol Sci 22(5):2557.
  • Fox CS, Matsushita K, Woodward M, Chronic Kidney Disease Prognosis Consortium, et al. (2012). Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet 380:1662–73.
  • Garg P. (2018). A review of podocyte biology. Am J Nephrol 47:3–13.
  • Gerstein HC, Sattar N, Rosenstock J, AMPLITUDE-O Trial Investigators, et al. (2021). Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N Engl J Med 385:896–907.
  • Gonçalves C, Pereira P, Gama M. (2010). Self-assembled hydrogel nanoparticles for drug delivery applications. Materials 3:1420–60.
  • Gregoriadis G, Perrie Y. (2010). Liposomes. In: Encyclopedia of life sciences. Chicheste: John Wiley & Sons, Ltd, 2656.
  • Guimaraes D, Cavaco-Paulo A, Nogueira E. (2021). Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm 601:120571.
  • Gutierrez-Millan C, Calvo Díaz C, Lanao JM, Colino CI. (2021). Advances in exosomes-based drug delivery systems. Macromol Biosci 21:e2000269.
  • Haas M, Moolenaar F, Meijer DK, de Zeeuw D. (2002). Specific drug delivery to the kidney. Cardiovasc Drugs Ther 16:489–96.
  • Han F, Xue M, Chang Y, et al. (2017). Triptolide suppresses glomerular mesangial cell proliferation in diabetic nephropathy is associated with inhibition of PDK1/Akt/mTOR pathway. Int J Biol Sci 13:1266–75.
  • Han Y, Xu X, Tang C, et al. (2018). Reactive oxygen species promote tubular injury in diabetic nephropathy: the role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biol 16:32–46.
  • He J, Chen H, Zhou W, et al. (2020). Kidney targeted delivery of asiatic acid using a FITC labeled renal tubular-targeting peptide modified PLGA-PEG system. Int J Pharm 584:119455.
  • Hernandez Becerra E, Quinchia J, Castro C, Orozco J. (2022). Light-triggered polymersome-based anticancer therapeutics delivery. Nanomaterials (Basel) 12:836.
  • Hirsjarvi S, Passirani C, Benoit JP. (2011). Passive and active tumour targeting with nanocarriers. Curr Drug Discov Technol 8:188–96.
  • Ismail R, Csoka I. (2017). Novel strategies in the oral delivery of antidiabetic peptide drugs - insulin, GLP 1 and its analogs. Eur J Pharm Biopharm 115:257–67.
  • Jha JC, Dai A, Garzarella J, Charlton A, et al. (2022). Independent of Renox, NOX5 promotes renal inflammation and fibrosis in diabetes by activating ROS-sensitive pathways. Diabetes 71:1282–98.
  • Jia X, Zang L, Pang P, et al. (2022). A study on the status of normoalbuminuric renal insufficiency among type 2 diabetes mellitus patients: a multicenter study based on a Chinese population. J Diabetes 14:15–25.
  • Jin J, Shi Y, Gong J, et al. (2019). Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte. Stem Cell Res Ther 10:95.
  • Joglekar M, Trewyn BG. (2013). Polymer-based stimuli-responsive nanosystems for biomedical applications. Biotechnol J 8:931–45.
  • Kato M, Natarajan R. (2019). Epigenetics and epigenomics in ­diabetic kidney disease and metabolic memory. Nat Rev Nephrol 15:327–45.
  • Kawanami D, Matoba K, Utsunomiya K. (2016). Signaling pathways in diabetic nephropathy. Histol Histopathol 31:1059–67.
  • Kean T, Thanou M. (2010). Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62:3–11.
  • Khater SI, Mohamed AA, Arisha AH, Ebraheim LLM, et al. (2021). Stabilized-chitosan selenium nanoparticles efficiently reduce renal tissue injury and regulate the expression pattern of aldose reductase in the diabetic-nephropathy rat model. Life Sci 279:119674.
  • Klessens CQF, Zandbergen M, Wolterbeek R, et al. (2017). DHT IJ: macrophages in diabetic nephropathy in patients with type 2 diabetes. Nephrol Dial Transplant 32:1322–9.
  • Kristensen M, Birch D, Morck Nielsen H. (2016). Applications and challenges for use of cell-penetrating peptides as delivery vectors for peptide and protein cargos. Int J Mol Sci 17(2):185.
  • Kumar GS, Kulkarni A, Khurana A, et al. (2014). Selenium nanoparticles involve HSP-70 and SIRT1 in preventing the progression of type 1 diabetic nephropathy. Chem Biol Interact 223:125–33.
  • Lehner R, Wang X, Marsch S, Hunziker P. (2013). Intelligent nanomaterials for medicine: carrier platforms and targeting strategies in the context of clinical application. Nanomedicine 9:742–57.
  • Li G, Sun B, Li Y, et al. (2021). Small-molecule prodrug nanoassemblies: an emerging nanoplatform for anticancer drug delivery. Small 17:e2101460.
  • Li J, Zhang J, Lu Y, Zhang C. (2021). Effect of neutrophil-like melanin biomimic photothermal nanoparticles on glomerular mesangial cells in rats with gestational diabetic nephropathy. Colloid Interface Sci Commun 43:100458. (
  • Li L, Wu Y, Wang C, Zhang W. (2012). Inhibition of PAX2 gene expression by siRNA (polyethylenimine) in experimental model of obstructive nephropathy. Ren Fail 34:1288–96.
  • Li S, Zheng L, Zhang J, et al. (2021). Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy. Free Radic Biol Med 162:435–49.
  • Liang Y, Duan L, Lu J, Xia J. (2021). Engineering exosomes for targeted drug delivery. Theranostics 11:3183–95.
  • Liu L, Pan X, Xie F, et al. (2022). Design, synthesis and biological activity evaluation of a series of bardoxolone methyl prodrugs. Bioorg Chem 124:105831.
  • Liu L, Xu Q, Zhang L, et al. (2021). Fe3O4 magnetic nanoparticles ameliorate albumin-induced tubulointerstitial fibrosis by autophagy related to Rab7. Colloids Surf B Biointerfaces 198:111470.
  • Liu Q, Chen X, Kan M, et al. (2021). Gypenoside XLIX loaded nanoparticles targeting therapy for renal fibrosis and its mechanism. Eur J Pharmacol 910:174501.
  • Luft FC, Aronoff GR, Evan AP, et al. (1982). Effects of moxalactam and cefotaxime on rabbit renal tissue. Antimicrob Agents Chemother 21:830–5.
  • Makhlough A, Kashi Z, Akha O, et al. (2014). Effect of spironolactone on diabetic nephropathy compared to the combination of spironolactone and losartan. Nephrourol Mon 6:e12148.
  • Manna K, Mishra S, Saha M, et al. (2019). Amelioration of diabetic nephropathy using pomegranate peel extract-stabilized gold nanoparticles: assessment of NF-kappaB and Nrf2 signaling system. Int J Nanomed 14:1753–77.
  • Meldrum KK, Burnett AL, Meng X, et al. (2003). Liposomal delivery of heat shock protein 72 into renal tubular cells blocks nuclear factor-kappaB activation, tumor necrosis factor-alpha production, and subsequent ischemia-induced apoptosis. Circ Res 92:293–9.
  • Merlin JPJ, Li X. (2021). Role of nanotechnology and their perspectives in the treatment of kidney diseases. Front Genet 12:817974.
  • Michos ED, Tuttle KR. (2021). GLP-1 receptor agonists in diabetic kidney disease. Clin J Am Soc Nephrol 16:1578–80.
  • Millotti G, Laffleur F, Perera G, et al. (2014). In vivo evaluation of thiolated chitosan tablets for oral insulin delivery. J Pharm Sci 103:3165–70.
  • Moon JY, Jeong KH, Lee TW, et al. (2012). Aberrant recruitment and activation of T cells in diabetic nephropathy. Am J Nephrol 35:164–74.
  • Mosenzon O, Leibowitz G, Bhatt DL, et al. (2017). Effect of Saxagliptin on Renal Outcomes in the SAVOR-TIMI 53 Trial. Diabetes Care 40:69–76.
  • Motiei M, Kashanian S, Lucia LA, Khazaei M. (2017). Intrinsic parameters for the synthesis and tuned properties of amphiphilic chitosan drug delivery nanocarriers. J Control Release 260:213–25.
  • Nagaishi K, Mizue Y, Chikenji T, et al. (2016). Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci Rep 6:34842.
  • National Kidney Foundation. (2012). KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am J Kidney Dis 60:850–86.
  • Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, García-Pérez J. (2011). Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 7:327–40.
  • Neal B, Perkovic V, Mahaffey KW, CANVAS Program Collaborative Group, et al. (2017). Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–57.
  • Opazo-Rios L, Plaza A, Sanchez Matus Y, et al. (2020). Targeting NF-kappaB by the cell-permeable nemo-binding domain peptide improves albuminuria and renal lesions in an experimental model of type 2 diabetic nephropathy. Int J Mol Sci 21(12):4225.
  • Ozturk-Atar K, Eroglu H, Calis S. (2018). Novel advances in targeted drug delivery. J Drug Target 26:633–42.
  • Pan-Pan Lin Q-LX, Chen L-W. (2021). A new one-dimensional copper(II) coordination polymer: crystal structure and treatment activity on diabetic nephropathy. In: Inorganic and nano-metal chemistry. Taylor & Francis.
  • Park W, Na K. (2015). Advances in the synthesis and application of nanoparticles for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:494–508.
  • Ponchiardi C, Mauer M, Najafian B. (2013). Temporal profile of diabetic nephropathy pathologic changes. Curr Diab Rep 13:592–9.
  • Qamar Z, Qizilbash FF, Iqubal MK, et al. (2019). Nano-based drug delivery system: recent strategies for the treatment of ocular disease and future perspective. Recent Pat Drug Deliv Formul 13:246–54.
  • Raval N, Gondaliya P, Tambe V, et al. (2021). Engineered nanoplex mediated targeted miRNA delivery to rescue dying podocytes in diabetic nephropathy. Int J Pharm 605:120842.
  • Raval N, Jogi H, Gondaliya P, et al. (2019). Method and its Composition for encapsulation, stabilization, and delivery of siRNA in Anionic polymeric nanoplex: an in vitro- in vivo assessment. Sci Rep 9:16047.
  • Ravindran S, Munusamy S. (2022). Renoprotective mechanisms of sodium-glucose co-transporter 2 (SGLT2) inhibitors against the progression of diabetic kidney disease. J Cell Physiol 237:1182–205.
  • Reidy K, Kang HM, Hostetter T, Susztak K. (2014). Molecular mechanisms of diabetic kidney disease. J Clin Invest 124:2333–40.
  • Saeedi P, Petersohn I, Salpea P, IDF Diabetes Atlas Committee, et al. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 157:107843.
  • Salva E, Turan SÖ, Akbuğa J. (2017). Inhibition of glomerular mesangial cell proliferation by siPDGF-B- and siPDGFR-beta-containing chitosan nanoplexes. AAPS PharmSciTech 18:1031–42.
  • Samsu N. (2021). Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. Biomed Res Int 2021:1497449.
  • Sanajou D, Ghorbani Haghjo A, Argani H, Aslani S. (2018). AGE-RAGE axis blockade in diabetic nephropathy: current status and future directions. Eur J Pharmacol 833:158–64.
  • Schellmann N, Deckert PM, Bachran D, et al. (2010). Targeted enzyme prodrug therapies. Mini Rev Med Chem 10:887–904.
  • Scindia Y, Deshmukh U, Thimmalapura PR, Bagavant H. (2008). Anti-alpha8 integrin immunoliposomes in glomeruli of lupus-susceptible mice: a novel system for delivery of therapeutic agents to the renal glomerulus in systemic lupus erythematosus. Arthritis Rheum 58:3884–91.
  • Shao J, Zaro J, Shen Y. (2020). Advances in exosome-based drug delivery and tumor targeting: from tissue distribution to intracellular fate. Int J Nanomed 15:9355–71.
  • Sharma G, Sharma AR, Nam JS, et al. (2015). Nanoparticle based insulin delivery system: the next generation efficient therapy for Type 1 diabetes. J Nanobiotechnol 13:74.
  • Sharma P, Blackburn RC, Parke CL, et al. (2011). Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers for adults with early (stage 1 to 3) non-diabetic chronic kidney disease. Cochrane Database Syst Rev (10):CD007751.
  • Shen H, Wang W. (2021). Effect of glutathione liposomes on diabetic nephropathy based on oxidative stress and polyol pathway mechanism. J Liposome Res 31:317–25.
  • Shi GJ, Li Y, Cao QH, et al. (2019). In vitro and in vivo evidence that quercetin protects against diabetes and its complications: a systematic review of the literature. Biomed Pharmacother 109:1085–99.
  • Sila A, Ghlissi Z, Kamoun Z, et al. (2015). Astaxanthin from shrimp by-products ameliorates nephropathy in diabetic rats. Eur J Nutr 54:301–7.
  • Simons M, Raposo G. (2009). Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–81.
  • Su Y, Xie Z, Kim GB, et al. (2015). Design strategies and applications of circulating cell-mediated drug delivery systems. ACS Biomater Sci Eng 1:201–17.
  • Tang L, Li K, Zhang Y, et al. (2020). Quercetin liposomes ameliorate streptozotocin-induced diabetic nephropathy in diabetic rats. Sci Rep 10:2440.
  • Tervaert TW, Mooyaart AL, Amann K, Renal Pathology Society, et al. (2010). Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 21:556–63.
  • Tesch GH, Ma FY, Han Y, et al. (2015). ASK1 inhibitor halts progression of diabetic nephropathy in Nos3-deficient mice. Diabetes 64:3903–13.
  • Testa B. (2009). Prodrugs: bridging pharmacodynamic/pharmacokinetic gaps. Curr Opin Chem Biol 13:338–44.
  • Tong F, Liu S, Yan B, et al. (2017). Quercetin nanoparticle complex attenuated diabetic nephropathy via regulating the expression level of ICAM-1 on endothelium. Int J Nanomed 12:7799–813.
  • Tong Y, Zhang L, Gong R, et al. (2020). A ROS-scavenging multifunctional nanoparticle for combinational therapy of diabetic nephropathy. Nanoscale 12:23607–19.
  • Tuffin G, Waelti E, Huwyler J, et al. (2005). Immunoliposome targeting to mesangial cells: a promising strategy for specific drug delivery to the kidney. J Am Soc Nephrol 16:3295–305.
  • Visweswaran GR, Gholizadeh S, Ruiters MH, et al. (2015). Targeting rapamycin to podocytes using a vascular cell adhesion molecule-1 (VCAM-1)-harnessed SAINT-based lipid carrier system. PLoS One 10:e0138870.
  • Vodosek Hojs N, Bevc S, Ekart R, Hojs R. (2020). Oxidative stress markers in chronic kidney disease with emphasis on diabetic nephropathy. Antioxidants (Basel) 9:925.
  • Wadia JS, Dowdy SF. (2002). Protein transduction technology. Curr Opin Biotechnol 13:52–6.
  • Wang G, Li Q, Chen D, et al. (2019). Kidney-targeted rhein-loaded liponanoparticles for diabetic nephropathy therapy via size control and enhancement of renal cellular uptake. Theranostics 9:6191–208.
  • Wanner C, Inzucchi SE, Lachin JM, EMPA-REG OUTCOME Investigators, et al. (2016). Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375:323–34.
  • Wardani G, Nugraha J, Mustafa MR, Sudjarwo SA. (2022). Antioxidative stress and anti-inflammatory activity of fucoidan nanoparticles against nephropathy of streptozotocin-induced diabetes in rats. Evid Based Complement Alternat Med 2022:3405871.
  • Wiviott SD, Raz I, Bonaca MP, DECLARE–TIMI 58 Investigators, et al. (2019). Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 380:347–57.
  • Woraphatphadung T, Sajomsang W, Rojanarata T, et al. (2018). Development of chitosan-based pH-sensitive polymeric micelles containing curcumin for colon-targeted drug delivery. AAPS PharmSciTech 19:991–1000.
  • Wu L, Chen M, Mao H, et al. (2017). Albumin-based nanoparticles as methylprednisolone carriers for targeted delivery towards the neonatal Fc receptor in glomerular podocytes. Int J Mol Med 39:851–60.
  • Wu Q, Wang J, Wang Y, et al. (2022). Targeted delivery of celastrol to glomerular endothelium and podocytes for chronic kidney disease treatment. Nano Res 15:3556–68.
  • Xu L, Liang HW, Yang Y, Yu SH. (2018). Stability and reactivity: positive and negative aspects for nanoparticle processing. Chem Rev 118:3209–50.
  • Yang C, Chen XC, Li ZH, et al. (2021). SMAD3 promotes autophagy dysregulation by triggering lysosome depletion in tubular epithelial cells in diabetic nephropathy. Autophagy 17:2325–44.
  • Yang D, Livingston MJ, Liu Z, et al. (2018). Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential. Cell Mol Life Sci 75:669–88.
  • Yang X, Mou S. (2017). Role of immune cells in diabetic kidney disease. Curr Gene Ther 17:424–33.
  • Yin W, Jiang Y, Xu S, et al. (2019). Protein kinase C and protein kinase A are involved in the protection of recombinant human glucagon-like peptide-1 on glomeruli and tubules in diabetic rats. J Diabetes Investig 10:613–25.
  • You YH, Quach T, Saito R, et al. (2016). Metabolomics reveals a key role for fumarate in mediating the effects of NADPH Oxidase 4 in diabetic kidney disease. J Am Soc Nephrol 27:466–81.
  • Yuan ZX, Jia L, Lim LY, et al. (2017). Renal-targeted delivery of triptolide by entrapment in pegylated TRX-20-modified liposomes. Int J Nanomed 12:5673–86.
  • Yue T, Xu HL, Chen PP, et al. (2017). Combination of coenzyme Q10-loaded liposomes with ultrasound targeted microbubbles destruction (UTMD) for early theranostics of diabetic nephropathy. Int J Pharm 528:664–74.
  • Zhang D, Gava AL, Van Krieken R, et al. (2019). The caveolin-1 regulated protein follistatin protects against diabetic kidney disease. Kidney Int 96:1134–49.
  • Zhang H, Schin M, Saha J, et al. (2010). Podocyte-specific overexpression of GLUT1 surprisingly reduces mesangial matrix expansion in diabetic nephropathy in mice. Am J Physiol Renal Physiol 299:F91–98.
  • Zhang H, Zhang S, Wang L, et al. (2018). Chitooligosaccharide guanidine inhibits high glucose-induced activation of DAG/PKC pathway by regulating expression of GLUT2 in type 2 diabetic nephropathy rats. J Funct Foods 41:41–7.
  • Zhang L, Long J, Jiang W, et al. (2016). Trends in chronic kidney disease in China. N Engl J Med 375:905–6.
  • Zhou TT, Zhao T, Ma F, et al. (2019). Small molecule IVQ, as a prodrug of gluconeogenesis inhibitor QVO, efficiently ameliorates glucose homeostasis in type 2 diabetic mice. Acta Pharmacol Sin 40:1193–204.
  • Zhou X, Wang B, Zhu L, Hao S. (2012). A novel improved therapy strategy for diabetic nephropathy: targeting AGEs. Organogenesis 8:18–21.
  • Zhou Y, Chi J, Huang Y, et al. (2021). Efficacy and safety of endothelin receptor antagonists in type 2 diabetic kidney disease: a systematic review and meta-analysis of randomized controlled trials. Diabet Med 38:e14411.
  • Zinman B, Wanner C, Lachin JM, EMPA-REG OUTCOME Investigators, et al. (2015). Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–28.