2,662
Views
6
CrossRef citations to date
0
Altmetric
Review

Potential lipid-based strategies of amphotericin B designed for oral administration in clinical application

, , , &
Article: 2161671 | Received 06 Oct 2022, Accepted 18 Dec 2022, Published online: 05 Jan 2023

References

  • Ibrahim F, Sivak O, Wasan EK, et al. (2013). Efficacy of an oral and tropically stable lipid-based formulation of Amphotericin B (iCo-010) in an experimental mouse model of systemic candidiasis. Lipids Health Dis 12:1.
  • Adhikari P, Pal P, Das AK, et al. (2017). Nano lipid-drug conjugate: An integrated review. Int J Pharm 529:629–10.
  • Adler-Moore J, Lewis RE, Brüggemann RJM, et al. (2019). Preclinical safety, tolerability, pharmacokinetics, pharmacodynamics, and antifungal activity of Liposomal Amphotericin B. Clin Infect Dis 68:S244–S259.
  • Aigner M, Lass-Flörl C. (2020). Encochleated Amphotericin B: is the oral availability of Amphotericin B finally reached? JoF 6:66.
  • Alvarez C, Shin DH, Kwon GS. (2016). Reformulation of Fungizone by PEG-DSPE Micelles: deaggregation and detoxification of Amphotericin B. Pharm Res 33:2098–106.
  • Arouri A, Hansen AH, Rasmussen TE, Mouritsen OG. (2013). Lipases, liposomes and lipid-prodrugs. Curr Opin Colloid Interface 18:419–31.
  • Benincasa M, Pacor S, Wu W, et al. (2011). Antifungal activity of amphotericin B conjugated to carbon nanotubes. ACS Nano 5:199–208.
  • Bozó T, Brecska R, Gróf P, Kellermayer MS. (2015). Extreme resilience in cochleate nanoparticles. Langmuir 31:839–45.
  • Chaudhari MB, Desai PP, Patel PA, Patravale VB. (2016). Solid lipid nanoparticles of amphotericin B (AmbiOnp): in vitro and in vivo assessment towards safe and effective oral treatment module. Drug Deliv Transl Res 6:354–64.
  • Ciesielski F, Griffin DC, Loraine J, et al. (2016). Recognition of membrane sterols by polyene antifungals Amphotericin B and Natamycin, A (13)C MAS NMR study. Front Cell Dev Biol 4:57.
  • Cuddihy G, Wasan EK, Di Y, Wasan KM. (2019). The development of oral Amphotericin B to treat systemic fungal and parasitic infections: has the myth been finally realized? Pharmaceutics 11:99.
  • Das S, Devarajan PV. (2020). Enhancing safety and efficacy by altering the toxic aggregated state of Amphotericin B in lipidic nanoformulations. Mol Pharm 17:2186–95.
  • Delmas G, Park S, Chen ZW, et al. (2002). Efficacy of orally delivered cochleates containing amphotericin B in a murine model of aspergillosis. Antimicrob Agents Chemother 46:2704–7.
  • Diezi TA, Kwon G. (2012). Amphotericin B/sterol co-loaded PEG-phospholipid micelles: effects of sterols on aggregation state and hemolytic activity of amphotericin B. Pharm Res 29:1737–44.
  • Din FU, Aman W, Ullah I, et al. (2017). Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 12:7291–309.
  • Egito ES, Araújo IB, Damasceno BP, Price JC. (2002). Amphotericin B/emulsion admixture interactions: an approach concerning the reduction of amphotericin B toxicity. J Pharm Sci 91:2354–66.
  • Farmakiotis D, Tverdek FP, Kontoyiannis DP. (2013). The safety of amphotericin B lipid complex in patients with prior severe intolerance to liposomal amphotericin B. Clin Infect Dis 56:701–3.
  • Fatma S, Talegaonkar S, Iqbal Z, et al. (2016). Novel flavonoid-based biodegradable nanoparticles for effective oral delivery of etoposide by P-glycoprotein modulation: an in vitro, ex vivo and in vivo investigations. Drug Deliv 23:500–11.
  • Faustino C, Pinheiro L. (2020). Lipid systems for the delivery of Amphotericin B in antifungal therapy. Pharmaceutics 12:29.
  • Fonte P, Araújo F, Silva C, et al. (2015). Polymer-based nanoparticles for oral insulin delivery: revisited approaches. Biotechnol Adv 33:1342–54.
  • Fujii G, Chang JE, Coley T, Steere B. (1997). The formation of amphotericin B ion channels in lipid bilayers. Biochemistry 36:4959–68.
  • Gaba B, Fazil M, Ali A, et al. (2015). Nanostructured lipid (NLCs) carriers as a bioavailability enhancement tool for oral administration. Drug Deliv 22:691–700.
  • Gershkovich P, Sivak O, Wasan EK, Magil AB, et al. (2010). Biodistribution and tissue toxicity of amphotericin B in mice following multiple dose administration of a novel oral lipid-based formulation (iCo-009). J Antimicrob Chemother 65:2610–3.
  • Ghosh S, Ghosh S, Sil PC. (2019). Role of nanostructures in improvising oral medicine. Toxicol Rep 6:358–68.
  • Groll AH, Rijnders BJA, Walsh TJ, et al. (2019). Clinical pharmacokinetics, pharmacodynamics, safety and efficacy of Liposomal Amphotericin B. Clin Infect Dis 68:S260–S274.
  • Hargreaves PL, Nguyen TS, Ryan RO. (2006). Spectroscopic studies of amphotericin B solubilized in nanoscale bilayer membranes. Biochim Biophys Acta 1758:38–44.
  • Hnik P, Wasan EK, Wasan KM. (2020). Safety, tolerability, and pharmacokinetics of a novel oral Amphotericin B formulation (iCo-019) following single-dose administration to healthy human subjects: an alternative approach to parenteral Amphotericin B administration. Antimicrob Agents Chemother 64:e01450–1420.
  • Horev B, Klein MI, Hwang G, et al. (2015). pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. ACS Nano 9:2390–404.
  • iCo Therapeutics Inc. (2018). iCo therapeutics announces positive clinical outcome – Primary endpoint met in Phase 1 Oral Amphotericin B study. Available online: https://www.newsfilecorp.com/release/35503 (accessed on 27 June 2018).
  • iCo Therapeutics Inc. iCo Therapeutics Inc. (2020). Announces Oral Amphotericin B (iCo 019) update/appointment of Kishor Wasan as director of research. Available online: https://www.newsfilecorp.com/release/54453 (accessed on 15 April 2020).
  • Italia JL, Yahya MM, Singh D, Ravi Kumar MN. (2009). Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous Fungizone. Pharm Res 26:1324–31.
  • Jain S, Valvi PU, Swarnakar NK, Thanki K. (2012). Gelatin coated hybrid lipid nanoparticles for oral delivery of amphotericin B. Mol Pharm 9:2542–53.
  • Kamiński DM. (2014). Recent progress in the study of the interactions of amphotericin B with cholesterol and ergosterol in lipid environments. Eur Biophys J 43:453–67.
  • Karimzadeh I, Khalili H, Farsaei S, et al. (2013). Role of diuretics and lipid formulations in the prevention of amphotericin B-induced nephrotoxicity. Eur J Clin Pharmacol 69:1351–68.
  • Khatoon M, Shah KU, Din FU, et al. (2017). Proniosomes derived niosomes: recent advancements in drug delivery and targeting. Drug Deliv 24:56–69.
  • Kibathi L, Kumar P, Lionakis M, et al. (2018). A phase IIa efficacy, safety, tolerability and pharmacokinetic (pk) study of encochleated amphotericin b in patients with mucocutaneous (esophogeal, oropharyngeal, vulvovaginal) candidiasis who are refractory or intolerant to standard non-intravenous therapies. Open Forum Infect. Dis 5:S435–S435.
  • Kim KS, Suzuki K, Cho H, et al. (2018). Oral nanoparticles exhibit specific high-efficiency intestinal uptake and lymphatic transport. ACS Nano 12:8893–900.
  • Kulkarni JA, Chen S, Tam YYC. (2021). Scalable production of lipid nanoparticles containing Amphotericin B. Langmuir 37:7312–9.
  • Kumar S, Randhawa JK. (2015). Solid lipid nanoparticles of stearic acid for the drug delivery of paliperidone. RSC Adv 5:68743–50.
  • Lipa-Castro A, Nicolas V, Angelova A, et al. (2021). Cochleate formulations of Amphotericin b designed for oral administration using a naturally occurring phospholipid. Int J Pharm 603:120688.
  • Liu M, Chen M, Yang Z. (2017). Design of amphotericin B oral formulation for antifungal therapy. Drug Deliv 24:1–9.
  • Lu R, Hollingsworth C, Qiu J, et al. (2019). Efficacy of oral encochleated Amphotericin B in a mouse model of Cryptococcal Meningoencephalitis. mBio 10:e00724–719.
  • Ma Y, Fuchs AV, Boase NR, et al. (2015). The in vivo fate of nanoparticles and nanoparticle-loaded microcapsules after oral administration in mice: Evaluation of their potential for colon-specific delivery. Eur J Pharm Biopharm 94:393–403.
  • Ma Y, He H, Xia F, et al. (2017). In vivo fate of lipid-silybin conjugate nanoparticles: Implications on enhanced oral bioavailability. Nanomedicine 13:2643–54.
  • Maertens J, Pagano L, Azoulay E, Warris A. (2022). Liposomal amphotericin B-the present. J Antimicrob Chemother 77:ii11–ii20.
  • Martin-Loeches I, De Waele JJ, Timsit JF, Bassetti M. (2020). Conventional amphotericin B must be avoided in Candida infections. Intensive Care Med 46:560–1.
  • Matinas Biopharma. (2021). Matinas BioPharma announces positive data in the ongoing EnACT Trial of MAT2203 (Oral Amphotericin B) for the treatment of Cryptococcal Meningitis, exceeding the prespecified primary endpoint threshold. Available online: https://www.matinasbiopharma.com/investors/news-events/press-releases/detail/403/matinas-biopharma-announces-positive-data-in-the-ongoing (accessed on 13 September 2021).
  • Messori A, Fadda V, Maratea D, et al. (2013). Nephrotoxicity of different formulations of amphotericin B: summarizing evidence by network meta-analysis. Clin Infect Dis 57:1783–4.
  • Min JB, Kim ES, Lee JS, Lee HG. (2018). Preparation, characterization, and cellular uptake of resveratrol-loaded trimethyl chitosan nanoparticles. Food Sci Biotechnol 27:441–50.
  • Mir M, Ishtiaq S, Rabia S, et al. (2017). Nanotechnology: from in vivo imaging system to controlled drug delivery. Nanoscale Res Lett 12:500.
  • Moustafine RI, Margulis EB, Sibgatullina LF, et al. (2008). Comparative evaluation of interpolyelectrolyte complexes of chitosan with Eudragit L100 and Eudragit L100-55 as potential carriers for oral controlled drug delivery. Eur J Pharm Biopharm 70:215–25.
  • Nimtrakul P, Sermsappasuk P, Tiyaboonchai W. (2020). Strategies to enhance oral delivery of amphotericin B: a comparison of uncoated and enteric-coated nanostructured lipid carriers. Drug Deliv 27:1054–62.
  • Parvez S, Yadagiri G, Gedda MR, et al. (2020). Modified solid lipid nanoparticles encapsulated with Amphotericin B and Paromomycin: an effective oral combination against experimental murine visceral leishmaniasis. Sci Rep 10:12243.
  • Parvez S, Yadagiri G, Karole A, et al. (2020). Recuperating biopharmaceutical aspects of Amphotericin B and paromomycin using a chitosan functionalized nanocarrier via oral route for enhanced anti-leishmanial activity. Front Cell Infect Microbiol 10:570573.
  • Perlin DS. (2004). Amphotericin B cochleates: a vehicle for oral delivery. Curr Opin Investig Drugs 5:198–201.
  • Perrella A, Esposito C, Giuliani A, et al. (2020). Renal safety of Liposomal Amphotericin B after liver transplantation. Prog Transplant 30:179–81.
  • Radwan MA, AlQuadeib BT, Šiller L, et al. (2017). Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats. Drug Deliv 24:40–50.
  • Ramos GS, Vallejos VMR, Borges GSM, et al. (2022). Formulation of Amphotericin B in PEGylated liposomes for improved treatment of cutaneous leishmaniasis by parenteral and oral routes. Pharmaceutics 14:989.
  • Risovic V, Boyd M, Choo E, Wasan KM. (2003). Effects of lipid-based oral formulations on plasma and tissue amphotericin B concentrations and renal toxicity in male rats. Antimicrob Agents Chemother 47:3339–42.
  • Santangelo R, Paderu P, Delmas G, et al. (2000). Efficacy of oral cochleate-amphotericin B in a mouse model of systemic candidiasis. Antimicrob Agents Chemother 44:2356–60.
  • Senna JP, Barradas TN, Cardoso S, et al. (2018). Dual alginate-lipid nanocarriers as oral delivery systems for amphotericin B. Colloids Surf B Biointerfaces 166:187–94.
  • Shan W, Zhu X, Liu M, et al. (2015). Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. ACS Nano 9:2345–56.
  • Shim YH, Kim YC, Lee HJ, et al. (2011). Amphotericin B aggregation inhibition with novel nanoparticles prepared with poly(epsilon-caprolactone)/poly(n,n-dimethylamino-2-ethyl methacrylate) diblock copolymer. J Microbiol Biotechnol 21:28–36.
  • Silva AE, Barratt G, Chéron M, Egito ES. (2013). Development of oil-in-water microemulsions for the oral delivery of amphotericin B. Int J Pharm 454:641–8.
  • Singh A, Yadagiri G, Parvez S, et al. (2020). Formulation, characterization and in vitro anti-leishmanial evaluation of amphotericin B loaded solid lipid nanoparticles coated with vitamin B12-stearic acid conjugate. Mater Sci Eng C Mater Biol Appl 117:111279.
  • Skipper CP, Atukunda M, Stadelman A, et al. (2020). Phase I EnACT trial of the safety and tolerability of a novel oral formulation of Amphotericin B. Antimicrob Agents Chemother 64:e00838–820.
  • Starzyk J, Gruszecki M, Tutaj K, et al. (2014). Self-association of amphotericin B: spontaneous formation of molecular structures responsible for the toxic side effects of the antibiotic. J Phys Chem B 118:13821–32.
  • Suberviola B. (2021). Clinical safety of liposomal amphotericin B. Rev Iberoam Micol 38:56–60.
  • Thanki K, Date T, Jain S. (2019). Improved oral bioavailability and gastrointestinal stability of Amphotericin B through fatty acid conjugation approach. Mol Pharm 16:4519–29.
  • Thanki K, Date T, Jain S. (2021). Enabling Oral Amphotericin B delivery by merging the benefits of prodrug approach and nanocarrier-mediated drug delivery. ACS Biomater Sci Eng. Feb 15. Online ahead of print. doi: 10.1021/acsbiomaterials.0c01505.
  • Thanki K, Prajapati R, Sangamwar AT, Jain S. (2018). Long chain fatty acid conjugation remarkably decreases the aggregation induced toxicity of Amphotericin B. Int J Pharm 544:1–13.
  • Thornton SJ, Wasan KM. (2009). The reformulation of amphotericin B for oral administration to treat systemic fungal infections and visceral leishmaniasis. Expert Opin Drug Deliv 6:271–84.
  • Torrado JJ, Serrano DR, Uchegbu IF. (2013). The oral delivery of amphotericin B. Ther Deliv 4:9–12.
  • U.S. National Library of Medicine. (2015). ClinivalTrials.gov. NCT02629419. CAMB/MAT2203 in patients with Mucocutaneous Candidiasis. Available online: https://clinicaltrials.gov/ct2/show/nct02629419 (accessed on 14 December 2015).
  • U.S. National Library of Medicine. (2020). ClinivalTrials.gov. NCT02971007. Safety and efficacy of oral encochleated Amphotericin B (CAMB/MAT2203) in the treatment of Vulvovaginal Candidiasis (VVC). Available online: https://clinicaltrials.gov/ct2/show/nct02971007 (accessed on 22 April 2020).
  • U.S. National Library of Medicine. (2020). ClinivalTrials.gov. NCT04031833. Encochleated Oral Amphotericin for Cryptococcal Meningitis Trial (EnACT). Available online: https://clinicaltrials.gov/ct2/show/nct04031833 (accessed on 22 April 2020).
  • U.S. National Library of Medicine. (2020). ClinivalTrials.gov. NCT03187691. Safety and PK of Oral Encochleated Amphotericin B (CAMB/MAT2203) for Antifungal Prophylaxis in Patients Undergoing Induction Chemotherapy for Acute Myelogenous and Lymphoblastic Leukaemia. Available online: https://clinicaltrials.gov/ct2/show/nct03187691 (accessed on 22 April 2020).
  • U.S. National Library of Medicine. (2020). ClinivalTrials.gov. NCT03167957. Efficacy and Safety of Oral Encochleated Amphotericin B (CAMB) in the Treatment of Fluconazole-Resistant Vulvovaginal Candidiasis. Available online: https://clinicaltrials.gov/ct2/show/study/NCT03167957 (accessed on 17 May 2020).
  • U.S. National Library of Medicine. (2022). ClinivalTrials.gov. NCT05541107. Encochleated Oral Amphotericin for Cryptococcal Meningitis Trial 3 (EnACT3). Available online: https://clinicaltrials.gov/ct2/show/NCT05541107 (accessed on 15 September 2022).
  • Verma A, Sharma S, Gupta PK, et al. (2016). Vitamin B12 functionalized layer by layer calcium phosphate nanoparticles: a mucoadhesive and pH responsive carrier for improved oral delivery of insulin. Acta Biomater 31:288–300.
  • Verma RK, Pandya S, Misra A. (2011). Loading and release of amphotericin-B from biodegradable poly(lactic-co-glycolic acid) nanoparticles. J Biomed Nanotechnol 7:118–20.
  • Volmer AA, Szpilman AM, Carreira EM. (2010). Synthesis and biological evaluation of amphotericin B derivatives. Nat Prod Rep 27:1329–49.
  • Wasan EK, Bartlett K, Gershkovich P, et al. (2009). Development and characterization of oral lipid-based amphotericin B formulations with enhanced drug solubility, stability and antifungal activity in rats infected with Aspergillus fumigatus or Candida albicans. Int J Pharm 372:76–84.
  • Wasan KM. (2020). Development of an Oral Amphotericin B formulation as an alternative approach to parenteral Amphotericin B administration in the treatment of blood-borne fungal infections. Curr Pharm Des 26:1521–3.
  • Yang Z, Chen M, Yang M, et al. (2014). Evaluating the potential of cubosomal nanoparticles for oral delivery of amphotericin B in treating fungal infection. Int J Nanomedicine 9:327–36.
  • Zahid F, Batool S, Ud-Din F, et al. (2022). Antileishmanial agents co-loaded in transfersomes with enhanced macrophage uptake and reduced toxicity. AAPS PharmSciTech 23:226.
  • Zarif L, Graybill JR, Perlin D, et al. (2000). Antifungal activity of amphotericin B cochleates against Candida albicans infection in a mouse model. Antimicrob Agents Chemother 44:1463–9.
  • Zeb A, Rana I, Choi HI, et al. (2020). Potential and applications of nanocarriers for efficient delivery of biopharmaceuticals. Pharmaceutics 12:1184.
  • Zielińska J, Wieczór M, Bączek T, et al. (2016). Thermodynamics and kinetics of amphotericin B self-association in aqueous solution characterized in molecular detail. Sci Rep 6:19109.