1,939
Views
8
CrossRef citations to date
0
Altmetric
Research Article

‘Poly phenolic phytoceutical loaded nano-bilosomes for enhanced caco-2 cell permeability and SARS-CoV 2 antiviral activity’: in-vitro and insilico studies

, , , &
Article: 2162157 | Received 25 Oct 2022, Accepted 19 Dec 2022, Published online: 01 Jan 2023

References

  • Abdelbary AA, AbouGhaly MHH. (2015). Design and optimization of topical methotrexate loaded niosomes for enhanced management of psoriasis: application of Box–Behnken design, in-vitro evaluation and in-vivo skin deposition study. Int J Pharm 485:1–12.
  • Abdelbary GA, Amin MM, Zakaria MY. (2017). Ocular ketoconazole-loaded proniosomal gels: formulation, ex vivo corneal permeation and in vivo studies. Drug Deliv 24:309–19.
  • Abdelbary GA, Amin MM, Zakaria MY, El Awdan SA. (2018). Adefovir dipivoxil loaded proliposomal powders with improved hepatoprotective activity: formulation, optimization, pharmacokinetic, and biodistribution studies. J Liposome Res 28:259–74.
  • AbouSamra MM, Salama AH. (2017). Enhancement of the topical tolnaftate delivery for the treatment of tinea pedis via provesicular gel systems. J Liposome Res 27:324–34.
  • Aburahma MH. (2014). Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines. Drug Deliv 23(6):1847–67.
  • Aldawsari HM, Ahmed OAA, Alhakamy NA, et al. (2021). Lipidic Nano-sized emulsomes potentiates the cytotoxic and apoptotic effects of raloxifene hydrochloride in MCF-7 human breast cancer cells: factorial analysis and in vitro anti-tumor activity assessment. Pharmaceutics 13:783.
  • Alemi A, Zavar Reza J, Haghiralsadat F, et al. (2018). Paclitaxel and curcumin coadministration in novel cationic PEGylated niosomal formulations exhibit enhanced synergistic antitumor efficacy. J Nanobiotechnology 16:28.
  • Bapat P, Ghadi R, Chaudhari D, et al. (2019). Tocophersolan stabilized lipid nanocapsules with high drug loading to improve the permeability and oral bioavailability of curcumin. Int J Pharm 560:219–27.
  • Basha M, Abd El-Alim SH, Shamma RN, Awad GEA. (2013). Design and optimization of surfactant-based nanovesicles for ocular delivery of Clotrimazole. J Liposome Res 23:203–10.
  • Bnyan R, Khan I, Ehtezazi T, et al. (2018). Surfactant effects on lipid-based vesicles properties. J Pharm Sci 107:1237–46.
  • Bortolini O, Bernardi T, Fantin G, et al. (2011). Relative acidity scale of glycine- and taurine-conjugated bile acids through ESI-MS measurements. Steroids 76:596–602.
  • Caliceti P, Salmaso S, Elvassore N, Bertucco A. (2004). Effective protein release from PEG/PLA nano-particles produced by compressed gas anti-solvent precipitation techniques. J Control Release 94:195–205.
  • Camins A, Junyent F, Verdaguer E, et al. (2009). Resveratrol: an antiaging drug with potential therapeutic applications in treating diseases. Pharmaceuticals (Basel) 2:194–205.
  • Chan JF-W, Yuan S, Kok K-H, et al. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet 395:514–23.
  • Cheng B, Pan H, Liu D, et al. (2018). Functionalization of nanodiamond with vitamin E TPGS to facilitate oral absorption of curcumin. Int J Pharm 540:162–70.
  • Dai W, Zhang B, Jiang X-M, et al. (2020). Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 368:1331–5.
  • Deng P, Athary Abdulhaleem M F, Masoud RE, et al. (2022). “Employment of PEGylated ultra-deformable transferosomes for transdermal delivery of tapentadol with boosted bioavailability and analgesic activity in post-surgical pain”. Int J Pharm 628:122274.
  • Dubey S, Vyas SP. (2021). Emulsomes for lipophilic anticancer drug delivery: development, optimization and in vitro drug release kinetic study. Int J App Pharm 13:114–21.
  • El Zaafarany GM, Awad GAS, Holayel SM, Mortada ND. (2010). Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int J Pharm 397:164–72.
  • El-Sabawi D, Abu-Dahab R, Zalloum WA, et al. (2019). The effect of ferrous ions, calcium ions and citric acid on absorption of ciprofloxacin across caco-2 cells: practical and structural approach. Drug Dev Ind Pharm 45:292–303.
  • Feoktistova M, Geserick P, Leverkus M. (2016). Crystal violet assay for determining viability of cultured cells. Cold Spring Harb Protoc 2016:pdb.prot087379.
  • Gurung AB, Ali MA, Lee J, et al. (2020). In silico screening of FDA approved drugs reveals ergotamine and dihydroergotamine as potential coronavirus main protease enzyme inhibitors. Saudi J. Biol. Sci 27:2674–82.
  • Hegazy H, Amin MM, Fayad W, Zakaria MY. (2022). “TPGS surface modified bilosomes as boosting cytotoxic oral delivery systems of curcumin against doxorubicin resistant MCF-7 breast cancer cells”. Int J Pharm 619:121717.
  • Jain S, Tiwary A, Jain N. (2008). PEGylated elastic liposomal formulation for lymphatic targeting of zidovudine. Curr Drug Deliv 5:275–81.
  • Jin Z, Du X, Xu Y. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. 582:289–93.
  • Jo S, Kim H, Kim S, et al. (2019). Characteristics of flavonoids as potent MERS‐CoV 3C‐like protease inhibitors. Chem Biol Drug Des 94:2023–30.
  • Ko J-H, Sethi G, Um J-Y, et al. (2017). The role of resveratrol in cancer therapy. IJMS 18:2589.
  • Lin S-C, Ho C-T, Chuo W-H, et al. (2017). Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect Dis 17:144.
  • Mahmoud DB, Shitu Z, Mostafa A. (2020). Drug repurposing of nitazoxanide: can it be an effective therapy for COVID-19? J Genet Eng Biotechnol 18:35.
  • McIntosh K, Perlman S. (2015). Coronaviruses, Including Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. pp. 1928–1936.
  • Mosallam S, Sheta NM, Elshafeey AH, Abdelbary AA. (2021). Fabrication of highly deformable bilosomes for enhancing the topical delivery of terconazole: in vitro characterization, microbiological evaluation, and in vivo skin deposition study. AAPS PharmSciTech 22:74.
  • Muthu MS, Kulkarni SA, Xiong J, Feng S-S. (2011). Vitamin E TPGS coated liposomes enhanced cellular uptake and cytotoxicity of docetaxel in brain cancer cells. Int J Pharm 421:332–40.
  • Negi P, Aggarwal M, Sharma G, et al. (2017). Niosome-based hydrogel of resveratrol for topical applications: an effective therapy for pain related disorder(s). Biomed Pharmacother 88:480–7.
  • Pasquereau S, Nehme Z, Haidar Ahmad S, et al. (2021). Resveratrol inhibits HCoV-229E and SARS-CoV-2 coronavirus replication in vitro. Viruses 13:354.
  • Poonia N, Lather V, Narang JK, et al. (2020). Resveratrol-loaded folate targeted lipoprotein-mimetic nanoparticles with improved cytotoxicity, antioxidant activity and pharmacokinetic profile. Mater Sci Eng C Mater Biol Appl 114:111016.
  • Rathnayake AD, Zheng J, Kim Y, et al. (2020). 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV–infected mice. Sci Transl Med 12:eabc5332.
  • Salehi B, Mishra AP, Nigam M, et al. (2018). Resveratrol: a double-edged sword in health benefits. 6:91.
  • Sies H, Parnham MJ. (2020). Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections. Free Radic Biol Med 156:107–12.
  • Stoddard SV, Stoddard SD, Oelkers BK, et al. (2020). Optimization rules for SARS-CoV-2 Mpro antivirals: ensemble docking and exploration of the coronavirus protease active site. Viruses 12:942.
  • Tagami T, Ernsting MJ, Li S-D. (2011). Optimization of a novel and improved thermosensitive liposome formulated with DPPC and a Brij surfactant using a robust in vitro system. J Control Release 154:290–7.
  • Trott O, Olson AJ. (n.d). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:7.
  • Voss A, Coombs G, Unal S, et al. (2020). Publishing in face of the COVID-19 pandemic. Int J Antimicrob Agents 56:106081.
  • Xu X, Chen P, Wang J, et al. (2020). Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 63:457–60.
  • Zakaria MY, Fayad E, Althobaiti F, et al. (2021). Statistical optimization of bile salt deployed nanovesicles as a potential platform for oral delivery of piperine: accentuated antiviral and anti-inflammatory activity in MERS-CoV challenged mice. Drug Deliv 28:1150–65.
  • Zakaria MY, Georghiou PE, Banoub JH, Beshay BY. (2022a). Inclusion of a phytomedicinal flavonoid in biocompatible surface-modified chylomicron mimic nanovesicles with improved oral bioavailability and virucidal activity: molecular modeling and pharmacodynamic studies. Pharmaceutics 14:905.
  • Zakaria MY, Zaki I, Alhomrani M, et al. (2022b). Boosting the anti MERS-CoV activity and oral bioavailability of resveratrol via PEG-stabilized emulsomal nano-carrier: factorial design, in-vitro and in-vivo assessments. Drug Deliv 29:3155–67.
  • Zaki I, Abou-Elkhair RAI, Abu Almaaty AH, et al. (2021). Design and synthesis of newly synthesized acrylamide derivatives as potential chemotherapeutic agents against MCF-7 breast cancer cell line lodged on PEGylated bilosomal nano-vesicles for improving cytotoxic activity. Pharmaceuticals 14:1021.
  • Zhang X-P, Le Y, Wang J-X, et al. (2013). Resveratrol nanodispersion with high stability and dissolution rate. LWT – Food Sci Technol 50:622–8.
  • Zhou Z, Mou S, Chen X, et al. (2018). Anti‑inflammatory activity of resveratrol prevents inflammation by inhibiting NF‑κB in animal models of acute pharyngitis. Mol Med Rep 1269–74.