2,175
Views
3
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Nanomicelles for GLUT1-targeting hepatocellular carcinoma therapy based on NADPH depletion

, , , , , , , & show all
Article: 2162160 | Received 31 Oct 2022, Accepted 19 Dec 2022, Published online: 29 Dec 2022

References

  • Amann T, Hellerbrand C. (2009). GLUT1 as a therapeutic target in hepatocellular carcinoma. Expert Opin Ther Targets 13:1–13.
  • Amann T, Maegdefrau U, Hartmann A, et al. (2009). GLUT1 expression is increased in hepatocellular carcinoma and promotes tumorigenesis. Am J Pathol 174:1544–52.
  • Armstrong JS, Jones DP. (2002). Glutathione depletion enforces the mitochondrial permeability transition and causes cell death in Bcl-2 overexpressing HL60 cells. FASEB J 16:1263–5.
  • Bazak R, Houri M, Achy SE, et al. (2015). Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141:769–84.
  • Chai Z, Teng C, Yang L, et al. (2020). Doxorubicin delivered by redox-responsive hyaluronic acid–ibuprofen prodrug micelles for treatment of metastatic breast cancer. Carbohydr Polym 245:116527.
  • Chatterjee K, Zhang J, Honbo N, Karliner JS. (2010). Doxorubicin cardiomyopathy. Cardiology 115:155–62.
  • Deponte M. (2013). Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta 1830:3217–66.
  • Gorai S, Das NC, Gupta P, et al. (2022). Designing efficient multi-epitope peptide-based vaccine by targeting the antioxidant thioredoxin of bancroftian filarial parasite. Infect Genet Evol 98:105237.
  • Guo X, Liu F, Deng J, et al. (2020). Electron-accepting micelles deplete reduced nicotinamide adenine dinucleotide phosphate and impair two antioxidant cascades for ferroptosis-induced tumor eradication. ACS Nano 14:14715–30.
  • He B, Wang Y, Zheng Y, et al. (2013). Synthesis and cytotoxic evaluation of acylated Brefeldin A derivatives as potential anticancer agents. Chem Biol Drug Des 82:307–16.
  • Kikuchi S, Shinpo K, Tsuji S, et al. (2003). Brefeldin A-induced neurotoxicity in cultured spinal cord neurons. J Neurosci Res 71:591–9.
  • Kudo M, Finn RS, Qin S, et al. (2018). Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular ­carcinoma: a randomised phase 3 non-inferiority trial. Lancet 391:1163–73.
  • Liu G, Gu A, Mingyan E. (2020). Mechanism and research progress of microbiome in the development of lung cancer. Zhongguo Fei Ai Za Zhi 23:948–53.
  • Liu YX, Feng JY, Sun MM, et al. (2019). Aspirin inhibits the proliferation of hepatoma cells through controlling GLUT1-mediated glucose metabolism. Acta Pharmacol Sin 40:122–32.
  • Llovet JM, Burroughs A, Bruix J. (2003). Hepatocellular carcinoma. Lancet 362:1907–17.
  • Lu J. (2019). The Warburg metabolism fuels tumor metastasis. Cancer Metastasis Rev 38:157–64.
  • Mejía S, Gutman LAB, Camarillo CO, et al. (2018). Nicotinamide prevents sweet beverage-induced hepatic steatosis in rats by regulating the G6PD, NADPH/NADP(+) and GSH/GSSG ratios and reducing oxidative and inflammatory stress. Eur J Pharmacol 818:499–507.
  • Moreno-Sanchez R, Marin-Hernandez A, Gallardo-Perez JC, et al. (2018). Control of the NADPH supply and GSH recycling for oxidative stress management in hepatoma and liver mitochondria. Biochim Biophys Acta Bioenerg 1859:1138–50.
  • Phillips LR, Supko JG, Malspeis L. (1993). Analysis of brefeldin A in plasma by gas chromatography with electron capture detection. Anal Biochem 211:16–22.
  • Poff A, Koutnik AP, Egan KM, et al. (2019). Targeting the Warburg effect for cancer treatment: ketogenic diets for management of glioma. Semin Cancer Biol 56:135–48.
  • Ramsey MR, Sharpless NE. (2006). ROS as a tumour suppressor? Nat Cell Biol 8:1213–5.
  • Smith CV, Jones DP, Guenthner TM, et al. (1996). Compartmentation of glutathione: implications for the study of toxicity and disease. Toxicol Appl Pharmacol 140:1–12.
  • Szablewski L. (2013). Expression of glucose transporters in cancers. Biochim Biophys Acta 1835:164–9.
  • Szatrowski TP, Nathan CF. (1991). Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–8.
  • Takemura G, Fujiwara H. (2007). From the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 49:330–52.
  • Tong Y, Guo D, Lin SH, et al. (2021). SUCLA2-coupled regulation of GLS succinylation and activity counteracts oxidative stress in tumor cells. Mol Cell 81:2303–16.e8.
  • Trachootham D, Zhou Y, Zhang H, et al. (2006). Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer Cell 10:241–52.
  • Vander Heiden MG. (2011). Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 10:671–84.
  • Wood IS, Trayhurn P. (2003). Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr 89:3–9.
  • Zhang C, Chen Z, Li W, et al. (2020). Influences of different sugar ligands on targeted delivery of liposomes. J Drug Target 28:789–801.
  • Zhang J-M, Jiang Y-Y, Huang Q-F, et al. (2021). Brefeldin A delivery nanomicelles in hepatocellular carcinoma therapy: characterization, cytotoxic evaluation in vitro, and antitumor efficiency in vivo. Pharmacol Res 172:105800.
  • Zhang Y, Ren T, Gou J, et al. (2017). Strategies for improving the payload of small molecular drugs in polymeric micelles. J Control Release 261:352–66.
  • Zhao Z-X, Lu L-W, Qiu J, et al. (2018). Glucose transporter-1 as an independent prognostic marker for cancer: a meta-analysis. Oncotarget 9:2728–38.