2,005
Views
2
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

The cell type dependent sorting of CD9- and CD81 to extracellular vesicles can be exploited to convey tumor sensitive cargo to target cells

, &
Article: 2162161 | Received 08 Nov 2022, Accepted 19 Dec 2022, Published online: 29 Dec 2022

References

  • Aggarwal N, Sloane BF. (2014). Cathepsin B: multiple roles in cancer. Proteomics Clin Appl 8:1–10.
  • Alvarez-Erviti L, Seow Y, Yin H, et al. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–5.
  • Cashikar AG, Hanson PI. (2019). A cell-based assay for CD63-containing extracellular vesicles. PLoS One 14:e0220007.
  • Dubowchik GM, Firestone RA, Padilla L, et al. (2002). Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: model studies of enzymatic drug release and antigen-specific in vitro anticancer activity. Bioconjug Chem 13:855–69.
  • Dubowchik GM, Firestone RA. (1998). Cathepsin B-sensitive dipeptide prodrugs. 1. A model study of structural requirements for efficient release of doxorubicin. Bioorg Med Chem Lett 8:3341–6.
  • Dubowchik GM, Mosure K, Knipe JO, Firestone RA. (1998). Cathepsin B-sensitive dipeptide prodrugs. 2. Models of anticancer drugs paclitaxel (Taxol), mitomycin C and doxorubicin. Bioorg Med Chem Lett 8:3347–52.
  • Fordjour KJ, Guo C, Ai Y, Daaboul GG, Gould SJ. (2022). A shared, stochastic pathway mediates exosome protein budding along plasma and endosome membrane. J Biol Chem 298(10):102394.
  • Fuhrmann G, Serio A, Mazo M, et al. (2015). Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release 205:35–44.
  • Gondi CS, Rao JS. (2013). Cathepsin B as a cancer target. Expert Opin Ther Targets 17:281–91.
  • Haney MJ, Klyachko NL, Zhao Y, et al. (2015). Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 207:18–30.
  • Hung ME, Leonard JN. (2015). Stabilization of exosome-targeting peptides via engineered glycosylation. J Biol Chem 290:8166–72.
  • Kim MS, Haney MJ, Zhao Y, et al. (2016). Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 12:655–64.
  • Kooijmans SAA, Schiffelers RM, Zarovni N, Vago R. (2016). Modulation of tissue tropism and biological activity of exosomes and other extracellular vesicles: New nanotools for cancer treatment. Pharmacol Res 111:487–500.
  • La-Beck NM, Gabizon AA. (2017). Nanoparticle interactions with the immune system: clinical implications for liposome-based cancer chemotherapy. Front Immunol 8:416.
  • Lai CP, Mardini O, Ericsson M, et al. (2014). Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 8:483–94.
  • Lee S-S, Won J-H, Lim GJ, et al. (2019). A novel population of extracellular vesicles smaller than exosomes promotes cell proliferation. Cell Commun Signal 17:95.
  • Nakase I, Kobayashi NB, Takatani-Nakase T, Yoshida T. (2015). Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes. Sci Rep 5:10300.
  • Niswender KD, Blackman SM, Rohde L, et al. (1995). Quantitative imaging of green fluorescent protein in cultured cells: comparison of microscopic techniques, use in fusion proteins and detection limits. J Microsc 180:109–16.
  • Ruan H, Hao S, Young P, Zhang H. (2015). Targeting Cathepsin B for cancer therapies. Horiz Cancer Res 56:23–40.
  • Sato YT, Umezaki K, Sawada S, et al. (2016). Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep 6:21933.
  • Seymour LW. (1992). Passive tumor targeting of soluble macromolecules and drug conjugates. Crit Rev Ther Drug Carrier Syst 9:135–87.
  • Théry C, Witwer KW, Aikawa E, et al. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7:1535750.
  • Tian Y, Li S, Song J, et al. (2014). A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35:2383–90.
  • van Niel G, D’Angelo G, Raposo G. (2018). Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–28.
  • Walker S, Busatto S, Pham A, et al. (2019). Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics 9:8001–17.
  • Wang J, Li W, Lu Z, et al. (2017). The use of RGD-engineered exosomes for enhanced targeting ability and synergistic therapy toward angiogenesis. Nanoscale 9:15598–605.
  • Zarovni N, Corrado A, Guazzi P, et al. (2015). Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods 87:46–58.
  • Zhong YJ, Shao LH, Li Y. (2013). Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy (Review). Int J Oncol 42:373–83.