2,329
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Optimization of hyaluronan-enriched cubosomes for bromfenac delivery enhancing corneal permeation: characterization, ex vivo, and in vivo evaluation

, , &
Article: 2162162 | Received 14 Nov 2022, Accepted 19 Dec 2022, Published online: 01 Jan 2023

References

  • Abd-Elsalam WH, Ibrahim RR. (2021). Span 80/TPGS modified lipid-coated chitosan nanocomplexes of acyclovir as a topical delivery system for viral skin infections. Int J Pharm 609:1.
  • Abdelbary AA, Abd-Elsalam WH, Al-Mahallawi AM. (2016). Fabrication of novel ultradeformable bilosomes for enhanced ocular delivery of terconazole: in vitro characterization, ex vivo permeation and in vivo safety assessment. Int J Pharm 513:688–13.
  • Abdellatif MM, Josef M, El-Nabarawi MA, Teaima M. (2022). Sertaconazole-nitrate-loaded leciplex for treating keratomycosis: optimization using D-optimal design and in vitro, ex vivo, and in vivo studies. Pharmaceutics 14:2215.
  • Abdou EM, Fayed MA, Helal D, Ahmed KA. (2019). Assessment of the hepatoprotective effect of developed lipid-polymer hybrid nanoparticles (LPHNPs) encapsulating naturally extracted β-Sitosterol against CCl4 induced hepatotoxicity in rats. Sci Rep 9:1–14.
  • Akhter MH, Ahmad I, Alshahrani MY, et al. (2022). Drug Delivery Challenges and Current Progress in Nanocarrier-Based Ocular Therapeutic System. Gels 8:82.
  • Al-Mahallawi AM, Abdelbary AA, El-Zahaby S. (2021). Norfloxacin loaded nano-cubosomes for enhanced management of otitis externa: in vitro and in vivo evaluation. Int J Pharm 600:120490.
  • Albash R, El-Nabarawi MA, Refai H, Abdelbary AA. (2019). Tailoring of PEGylated bilosomes for promoting the transdermal delivery of olmesartan medoxomil: in-vitro characterization, ex-vivo permeation and in-vivo assessment. Int J Nanomedicine 14:6555–74.
  • Ang BCH, Sng JJ, Wang PXH, et al. (2017). Sodium hyaluronate in the treatment of dry eye syndrome: a systematic review and meta-analysis. Sci Rep 7:9013.
  • Ángeles GH, Nešporová K. (2021). Hyaluronan and its derivatives for ophthalmology: recent advances and future perspectives. Carbohydr Polym 259:117697.
  • Barkat MA, Das SS, Pottoo FH, et al. (2020). Lipid-based nanosystem as intelligent carriers for versatile drug delivery applications. Curr Pharm Des 26:1167–80.
  • Bei D, Zhang T, Murowchick JB, Youan BB. (2010). Formulation of dacarbazine-loaded cubosomes. Part III. Physicochemical characterization. AAPS PharmSciTech 11:1243–9.
  • Cable M. (2012). Comparison of bromfenac 0.09% QD to nepafenac 0.1% TID after cataract surgery: pilot evaluation of visual acuity, macular volume, and retinal thickness at a single site. Clinical Ophthalmology 6:997.
  • Cagini C, Torroni G, Mariniello M, et al. (2021). Trehalose/sodium hyaluronate eye drops in post-cataract ocular surface disorders. Int Ophthalmol 41:3065–71.
  • Chávez-Mondragón E, Palacio C, Soto-Gómez A, et al. (2019). Efficacy and safety of bromfenac 0.09% and sodium hyaluronate 0.4% combination therapy, versus placebo in patients with pterygium I–III for clinical signs on ocular inflammation. Clin Ophthalmol 13:781–7.
  • Chong JY, Mulet X, Boyd BJ, Drummond CJ. (2015). Steric stabilizers for cubic phase lyotropic liquid crystal nanodispersions (cubosomes). Advances in Planar Lipid Bilayers and Liposomes 21:131–87.
  • Eldeeb AE, Salah S, Ghorab M. (2019). Formulation and evaluation of cubosomes drug delivery system for treatment of glaucoma: ex-vivo permeation and in-vivo pharmacodynamic study. J Drug Delivery Sci Technol 52:236–47.
  • Elnaggar YS, Etman SM, Abdelmonsif DA, Abdallah OY. (2015). Novel piperine-loaded Tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer’s disease: pharmaceutical, biological, and toxicological studies. Int J Nanomedicine 10:5459–73.
  • Fahmy AM, Hassan M, El-Setouhy DA, et al. (2021). Statistical optimization of hyaluronic acid enriched ultradeformable elastosomes for ocular delivery of voriconazole via Box-Behnken design: in vitro characterization and in vivo evaluation. Drug Deliv 28:77–86.
  • Fezza JP. (2018). Cross-linked hyaluronic acid gel occlusive device for the treatment of dry eye syndrome. Clin Ophthalmol 12:2277–83.
  • Fouda NH, Abdelrehim RT, Hegazy DA, Habib BA. (2018). Sustained ocular delivery of Dorzolamide-HCl via proniosomal gel formulation: in-vitro characterization, statistical optimization, and in-vivo pharmacodynamic evaluation in rabbits. Drug Deliv 25:1340–9.
  • Fujishima H, Fuseya M, Ogata M, Murat D. (2015). Efficacy of bromfenac sodium ophthalmic solution for treatment of dry eye disease. Asia Pac J Ophthalmol (Phila) 4:9–13.
  • Gaballa SA, El Garhy OH, Abdelkader H. (2020). Cubosomes: composition, preparation, and drug delivery applications. Journal of Advanced Biomedical and Pharmaceutical Sciences 3:1–9.
  • Gade S, Patel KK, Gupta C, et al. (2019). An ex vivo evaluation of moxifloxacin nanostructured lipid carrier enriched in situ gel for transcorneal permeation on goat cornea. J Pharm Sci 108:2905–16.
  • Garg M, Goyal A, Kumari S. (2021). An update on the recent advances in cubosome: a novel drug delivery system. Curr Drug Metab 22:441–50.
  • Hakeem EA, El-Mahrouk GM, Abdelbary G, Teaima MH. (2020). Freeze-dried clopidogrel loaded lyotropic liquid crystal: box-Behnken optimization, in-vitro and in-vivo evaluation. Curr Drug Deliv 17:207–17.
  • Han S, Shen JQ, Gan Y, et al. (2010). Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and high bioavailability. Acta Pharmacol Sin 31:990–8.
  • Hoffman RS, Braga-Mele R, Donaldson K, ASCRS Cataract Clinical Committee and the American Glaucoma Society, et al. (2016). Cataract surgery and nonsteroidal antiinflammatory drugs. J Cataract Refract Surg 42:1368–79.
  • Hosny KM. (2020). Nanosized cubosomal thermogelling dispersion loaded with saquinavir mesylate to improve its bioavailability: preparation, optimization, in vitro and in vivo evaluation. Int J Nanomedicine 15:5113–29.
  • Huang J, Peng T, Li Y, et al. (2017). Ocular cubosome drug delivery system for timolol maleate: preparation, characterization, cytotoxicity, ex vivo, and in vivo evaluation. AAPS PharmSciTech 18:2919–26.
  • Hundekar YR, Saboji J, Patil S, Nanjwade B. (2014). Preparation and evaluation of diclofenac sodium cubosomes for percutaneous administration. World Journal of Pharmacy and Pharmaceutical Sciences 3:523–39.
  • Huynh A, Priefer R. (2020). Hyaluronic acid applications in ophthalmology, rheumatology, and dermatology. Carbohydr Res 489:107950.
  • Kamel AE, Fadel M, Louis D. (2019). Curcumin-loaded nanostructured lipid carriers prepared using Peceol™ and olive oil in photodynamic therapy: development and application in breast cancer cell line. Int J Nanomedicine 14:5073–85.
  • Khan MM, Madni A, Torchilin V, Filipczak N, et al. (2019). Lipid-chitosan hybrid nanoparticles for controlled delivery of cisplatin. Drug Deliv 26:765–72.
  • Kiran BSS, Raja S. (2018). A novel analytical method development and validation for the estimation of Bromfenac sodium by using reverse phase-HPLC. The Pharma Innovation International Journal 7:569–73.
  • Kutbi HI, Asfour HZ, Kammoun AK, et al. (2021). Optimization of Hyaluronate-Based Liposomes to Augment the Oral Delivery and the Bioavailability of Berberine. Materials 14:5759.
  • Lai J, Lu Y, Yin Z, et al. (2010). Pharmacokinetics and enhanced oral bioavailability in beagle dogs of cyclosporine A encapsulated in glyceryl monooleate/poloxamer 407 cubic nanoparticles. Int J Nanomedicine 5:13–23.
  • Lewis GA, Mathieu D, Phan-Tan-Luu R. 1998. Pharmaceutical experimental design. Boca Raton, FL: CRC press.
  • Li Z, Guo R, Gu Z, et al. (2019). Identification of a promoter element mediating kisspeptin-induced increases in GnRH gene expression in sheep. Gene 699:1–7.
  • Mohamed HB, Attia Shafie MA, Mekkawy AI. (2022). Chitosan nanoparticles for meloxicam ocular delivery: development, in vitro characterization, and in vivo evaluation in a rabbit eye model. Pharmaceutics 14:893.
  • Mohyeldin SM, Mehanna MM, Elgindy NA. (2016). Superiority of liquid crystalline cubic nanocarriers as hormonal transdermal vehicle: comparative human skin permeation-supported evidence. Expert Opin Drug Deliv 13:1049–64.
  • Muller F, Salonen A, Glatter O. (2010). Phase behavior of Phytantriol/water bicontinuous cubic Pn3m cubosomes stabilized by Laponite disc-like particles. J Colloid Interface Sci 342:392–8.
  • Naguib MJ, Hassan YR, Abd-Elsalam WH. (2021). 3D printed ocusert laden with ultra-fluidic glycerosomes of ganciclovir for the management of ocular cytomegalovirus retinitis. Int J Pharm 607:121010.
  • Nair AB, Shah J, Al-Dhubiab BE, et al. (2021). Clarithromycin solid lipid nanoparticles for topical ocular therapy: optimization, evaluation and in vivo studies. Pharmaceutics 13:523.
  • Nasr M, Ghorab MK, Abdelazem A. (2015). In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm Sin B 5:79–88.
  • Nasr M, Teiama M, Ismail A, et al. (2020). In vitro and in vivo evaluation of cubosomal nanoparticles as an ocular delivery system for fluconazole in treatment of keratomycosis. Drug Deliv Transl Res 10:1841–52.
  • Nawaz T, Iqbal M, Khan BA, et al. (2021). Development and Optimization of Acriflavine-Loaded Polycaprolactone Nanoparticles Using Box–Behnken Design for Burn Wound Healing Applications. Polymers 14:101.
  • Nazaruk E, Majkowska-Pilip A, Bilewicz R. (2017). Lipidic cubic-phase nanoparticles—cubosomes for efficient drug delivery to cancer cells. ChemPlusChem 82:570–5.
  • Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R. (2011). Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci 1:228–34.
  • Rarokar NR, Saoji SD, Raut NA, et al. (2016). Nanostructured cubosomes in a thermoresponsive depot system: an alternative approach for the controlled delivery of docetaxel. AAPS PharmSciTech 17:436–45.
  • Rizwan SB, McBurney WT, Young K, et al. (2013). Cubosomes containing the adjuvants imiquimod and monophosphoryl lipid A stimulate robust cellular and humoral immune responses. J Control Release 165:16–21.
  • Sahoo SK, Panyam J, Prabha S, Labhasetwar V. (2002). Residual polyvinyl alcohol associated with poly (D, L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release 82:105–14.
  • Salah S, Mahmoud AA, Kamel AO. (2017). Etodolac transdermal cubosomes for the treatment of rheumatoid arthritis: ex vivo permeation and in vivo pharmacokinetic studies. Drug Deliv 24:846–56.
  • Sayed S, Abdel-Moteleb M, Amin MM, Khowessah OM. (2021). Cubogel as potential platform for glaucoma management. Drug Deliv 28:293–305.
  • Sherif S, Bendas ER, Badawy S. (2014). The clinical efficacy of cosmeceutical application of liquid crystalline nanostructured dispersions of alpha lipoic acid as anti-wrinkle. Eur J Pharm Biopharm 86:251–9.
  • Soleimani F, Madaah Hosseini HR, Ordikhani F, et al. (2016). Enhancing sonocatalytic properties of TiO2 nanocatalysts by controlling the surface conditions: effect of particle size and PVA modification. Desalination 57:28378–85.
  • Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. (2013). Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. Int J Pharm 443:293–305.
  • Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. (2016). Duodenum-triggered delivery of pravastatin sodium: II. Design, appraisal and pharmacokinetic assessments of enteric surface-decorated nanocubosomal dispersions. Drug Deliv 23:3266–78.
  • Thomas L, Viswanad V. (2012). Formulation and optimization of clotrimazole-loaded proniosomal gel using 32 factorial design. Sci Pharm 80:731–48.
  • Tomoda K, Chiang C, Kozak KR, Kwon G. (2015). Examination of gossypol-pluronic micelles as potential radiosensitizers. Aaps J 17:1369–75.
  • Tran TH, Choi JY, Ramasamy T, et al. (2014). Hyaluronic acid-coated solid lipid nanoparticles for targeted delivery of vorinostat to CD44 overexpressing cancer cells. Carbohydr Polym 114:407–15.
  • Vasanth S, Dubey A, G SR, et al. (2020). Development and Investigation of Vitamin C-Enriched Adapalene-Loaded Transfersome Gel: a Collegial Approach for the Treatment of Acne Vulgaris. AAPS PharmSciTech 21:61.
  • Vo A, Feng X, Patel D, et al. (2020). Factors affecting the particle size distribution and rheology of brinzolamide ophthalmic suspensions. Int J Pharm 586:119495.
  • Wadhwa S, Paliwal R, Paliwal SR, Vyas SP. (2010). Hyaluronic acid modified chitosan nanoparticles for effective management of glaucoma: development, characterization, and evaluation. J Drug Target 18:292–302.
  • Wörle G, Drechsler M, Koch MH, et al. (2007). Influence of composition and preparation parameters on the properties of aqueous monoolein dispersions. Int J Pharm 329:150–7.
  • Xing Y, Zhu L, Zhang K, et al. (2021). Nanodelivery of triamcinolone acetonide with PLGA-chitosan nanoparticles for the treatment of ocular inflammation. Artif Cells Nanomed Biotechnol 49:308–16.
  • Younes NF, Abdel-Halim SA, Elassasy AI. (2018). Corneal targeted Sertaconazole nitrate loaded cubosomes: preparation, statistical optimization, in vitro characterization, ex vivo permeation and in vivo studies. Int J Pharm 553:386–97.
  • Zamboni F, Vieira S, Reis RL, et al. (2018). The potential of hyaluronic acid in immunoprotection and immunomodulation: chemistry, processing and function. Prog Mater Sci 97:97–122.