1,448
Views
3
CrossRef citations to date
0
Altmetric
Research Article

MPET2: a multi-network poroelastic and transport theory for predicting absorption of monoclonal antibodies delivered by subcutaneous injection

ORCID Icon, , , &
Article: 2163003 | Received 17 Oct 2022, Accepted 19 Dec 2022, Published online: 10 Jan 2023

References

  • Abhyankar S, Brown J, Constantinescu EM, et al. (2018). Petsc/ts: A modern scalable ode/dae solver library. arXiv preprint arXiv:1806.01437.
  • Awwad S, Angkawinitwong U. (2018). Overview of antibody drug delivery. Pharmaceutics 10:1.
  • Balay S, Gropp WD, McInnes LC, Smith BF. (1997). Efficient management of parallelism in object-oriented numerical software libraries. In: Arge E, Bruaset AM, and Langtangen HP, editor. Modern software tools for scientific computing , 163–12. Boston: Birkhäuser.
  • Baxter LT, Jain RK. (1989). Transport of fluid and macromolecules in tumors. I. role of interstitial pressure and convection. Microvasc Res 37:77–104.
  • Bittner B, Richter W, Schmidt J. (2018). Subcutaneous administration of biotherapeutics: an overview of current challenges and opportunities. BioDrugs 32:425–40.
  • Chavda VP, Prajapati R, Lathigara D, et al. (2022). Therapeutic monoclonal antibodies for covid-19 management: an update. Expert Opin Biol Ther 22:763–80.
  • Chen EJ, Novakofski J, Jenkins WK, O’Brien WD. (1996). Young’s modulus measurements of soft tissues with application to elasticity imaging. IEEE Trans Ultrason Ferroelect Freq Contr 43:191–4.
  • Chung J, Hulbert GM. (1993). A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech 60:371–5.
  • Dalcin L, Collier N, Vignal P, et al. (2016). Petiga: a framework for high-performance isogeometric analysis. Comput Methods Appl Mech Eng 308:151–81.
  • Dana S, Ganis B, Wheeler MF. (2018). A multiscale fixed stress split iterative scheme for coupled flow and poromechanics in deep subsurface reservoirs. Comput Phys 352:1–22.
  • Dana S, Wheeler MF. (2018). Convergence analysis of two-grid fixed stress split iterative scheme for coupled flow and deformation in heterogeneous poroelastic media. Comput Methods in Appl Mech Eng 341:788–806.
  • de Lucio M, Bures M, Ardekani AM, et al. (2021). Isogeometric analysis of subcutaneous injection of monoclonal antibodies. Comput Methods Appl Mech Eng 373:113550.
  • de Zwart V, Gouw SC, Meyer-Wentrup FA. (2016). Antibody therapies for lymphoma in children. Cochrane Database Syst Rev 2016:CD011181.
  • Dershowitz W, Miller I. (1995). Dual porosity fracture flow and transport. Geophys Res Lett 22:1441–4.
  • Doughty DV, Clawson CZ, Lambert W, Subramony JA. (2016). Understanding subcutaneous tissue pressure for engineering injection devices for large-volume protein delivery. J Pharm Sci 105:2105–13.
  • Fung Y-C. (2013). Biomechanics: mechanical properties of living tissues. New York: Springer Science & Business Media.
  • González-Suárez A, Gutierrez-Herrera E, Berjano E, et al. (2015). Thermal and elastic response of subcutaneous tissue with different fibrous septa architectures to rf heating: numerical study. Lasers Surg Med 47:183–95.
  • Granger HJ. (1984). Dynamics and control of transmicro-vascular fluid exchange. Edema 189–228.
  • Guo L, Vardakis JC, Chou D, Ventikos Y. (2020). A multiple-network poroelastic model for biological systems and application to subject-specific modelling of cerebral fluid transport. Int J Eng Sci 147:103204.
  • Guo L, Vardakis JC, Lassila T, et al. (2018). Subject-specific multi-poroelastic model for exploring the risk factors associated with the early stages of Alzheimer’s disease. Interface Focus 8:20170019.
  • Haller MF. (2007). Converting intravenous dosing to subcutaneous dosing with recombinant human hyaluronidase. Pharm Technol 31:861–4.
  • Han D, Rahimi E, Aramideh S, Ardekani AM. (2021). Transport and lymphatic uptake of biotherapeutics through subcutaneous injection. J Pharm Sci.111:752–68.
  • Hou P, Zheng F, Corpstein CD, et al. (2021). Multiphysics modeling and simulation of subcutaneous injection and absorption of biotherapeutics: sensitivity analysis. Pharm Res 38:1011–30.
  • Hughes TJ, Cottrell JA, Bazilevs Y. (2005). Isogeometric analysis: Cad, finite elements, nurbs, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–95.
  • Hung JJ, Zeno WF, Chowdhury AA, et al. (2019). Self-diffusion of a highly concentrated monoclonal antibody by fluorescence correlation spectroscopy: insight into protein–protein interactions and self-association. Soft Matter 15:6660–76.
  • Jackisch C, Müller V, Maintz C, et al. (2014). Subcutaneous administration of monoclonal antibodies in oncology. Geburtshilfe Frauenheilkd 74:343–9.
  • Karlsen TV, McCormack E, Mujic M, et al. (2012). Minimally invasive quantification of lymph flow in mice and rats by imaging depot clearance of near-infrared albumin. Am J Physiol Heart Circ Physiol 302:H391–H401.
  • Kurbel S, Kurbel B, Belovari T, et al. (2001). Model of interstitial pressure as a result of cyclical changes in the capillary wall fluid transport. Med Hypotheses 57:161–6.
  • Launay-Vacher V. (2013). An appraisal of subcutaneous trastuzumab: a new formulation meeting clinical needs. Cancer Chemother Pharmacol 72:1361–7.
  • Lee JJ, Piersanti E, Mardal K-A, Rognes ME. (2019). A mixed finite element method for nearly incompressible multiple-network poroelasticity. SIAM J Sci Comput 41:A722–A747.
  • Leng Y, Ardekani AM, Gomez H. (2021). A poro-viscoelastic model for the subcutaneous injection of monoclonal antibodies. J Mech Phys Solids 155:104537.
  • Leng Y, de Lucio M, Gomez H. (2021). Using poro-elasticity to model the large deformation of tissue during subcutaneous injection. Comput Methods Appl Mech Eng 384:113919.
  • Leng Y, Wang H, de Lucio M, Gomez H. (2022). Mixed-dimensional multi-scale poroelastic modeling of adipose tissue for subcutaneous injection. Biomech Model Mechanobiol 21:1825–40.
  • Levick JR, Michel CC. (2010). Microvascular fluid exchange and the revised starling principle. Cardiovasc Res 87:198–210.
  • Levine DN. (2008). Intracranial pressure and ventricular expansion in hydrocephalus: have we been asking the wrong question? J Neurol Sci 269:1–11.
  • Li C, Guan G, Reif R, et al. (2012). Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography. J R Soc Interface 9:831–41.
  • Li JZ, Gandhi RT. (2022). Realizing the potential of anti–sars-cov-2 monoclonal antibodies for covid-19 management. JAMA 327:427–9.
  • Lin W-T, Hung S-H, Lai C-C, et al. (2022). The impact of neutralizing monoclonal antibodies on the outcomes of covid-19 outpatients: a systematic review and meta-analysis of randomized controlled trials. J Med Virol 94:2222–9.
  • McDonald TA, Zepeda ML, Tomlinson MJ, et al. (2010). Subcutaneous administration of biotherapeutics: current experience in animal models. Curr Opin Mol Ther 12:461–70.
  • Michler C, Cookson AN, Chabiniok R, et al. (2013). A computationally efficient framework for the simulation of cardiac perfusion using a multi-compartment darcy porous-media flow model. Int J Numer Method Biomed Eng 29:217–32.
  • Negrini D, Moriondo A. (2011). Lymphatic anatomy and biomechanics. J Physiol 589:2927–34.
  • Pain SJ, Nicholas RS, Barber RW, et al. (2002). Quantification of lymphatic function for investigation of lymphedema: depot clearance and rate of appearance of soluble macromolecules in blood. J Nucl Med 43:318–24.
  • Pisal DS, Kosloski MP, Balu-Iyer SV. (2010). Delivery of therapeutic proteins. J Pharm Sci 99:2557–75.
  • Podichetty JT, Bhaskar PR, Khalf A, Madihally SV. (2014). Modeling pressure drop using generalized scaffold characteristics in an axial-flow bioreactor for soft tissue regeneration. Ann Biomed Eng 42:1319–30.
  • Podichetty JT, Madihally SV. (2014). Modeling of porous scaffold deformation induced by medium perfusion. J Biomed Mater Res B Appl Biomater 102:737–48.
  • Porter CJH, Edwards GA, Charman SA. (2001). Lymphatic transport of proteins after sc injection: implications of animal model selection. Adv Drug Deliv Rev 50:157–71.
  • Rahimi E, Aramideh S, Han D, et al. (2022). Transport and lymphatic uptake of monoclonal antibodies after subcutaneous injection. Microvasc Res 139:104228.
  • Reddy ST, Berk DA, Jain RK, Swartz MA. (2006). A sensitive in vivo model for quantifying interstitial convective transport of injected macromolecules and nanoparticles. J Appl Physiol (1985) 101:1162–9.
  • Reilly RM, Domingo R, Sandhu J. (1997). Oral delivery of antibodies. Clin Pharmacokinet 32:313–23.
  • Richter WF, Bhansali SG, Morris ME. (2012). Mechanistic determinants of biotherapeutics absorption following sc administration. Aaps J 14:559–70.
  • Richter WF, Jacobsen B. (2014). Subcutaneous absorption of biotherapeutics: knowns and unknowns. Drug Metab Dispos 42:1881–9.
  • Saad Y, Schultz M. (1986). Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci and Stat Comput 7:856–69.
  • Sánchez-Félix M, Burke M, Chen HH, et al. (2020). Predicting bioavailability of monoclonal antibodies after subcutaneous administration: open innovation challenge. Adv Drug Deliv Rev 167:66–77.
  • Shpilberg O, Jackisch C. (2013). Subcutaneous administration of rituximab (mabthera) and trastuzumab (herceptin) using hyaluronidase. Br J Cancer 109:1556–61.
  • Sobey I, Eisenträger A, Wirth B, Czosnyka M. (2012). Simulation of cerebral infusion tests using a poroelastic model. Int J Numer Anal Model Ser B 3:52–64.
  • Stanton AW, Modi S, Mellor RH, et al. (2006). A quantitative lymphoscintigraphic evaluation of lymphatic function in the swollen hands of women with lymphoedema following breast cancer treatment. Clin Sci (Lond) 110:553–61.
  • Stanton AWB, Svensson WE, Mellor RH, et al. (2001). Differences in lymph drainage between swollen and non-swollen regions in arms with breast-cancer-related lymphoedema. Clin Sci (Lond) 101:131–40.
  • Swabb EA, Wei J, Gullino PM. (1974). Diffusion and convection in normal and neoplastic tissues. Cancer Res 34:2814–22.
  • Thomsen M, Hernandez-Garcia A, Mathiesen J, et al. (2014). Model study of the pressure build-up during subcutaneous injection. PLoS One 9:e104054.
  • Tinsley Oden J, Babuška I, Faghihi D. (2017). Predictive computational science: Computer predictions in the presence of uncertainty. Encyclopedia of Computational Mechanics Second Edition, 1:1–26.
  • Tully B, Ventikos Y. (2011). Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus. J Fluid Mech 667:188–215.
  • Turner MR, Balu-Iyer SV. (2018). Challenges and opportunities for the subcutaneous delivery of therapeutic proteins. J Pharm Sci 107:1247–60.
  • Uraki R, Kiso M, Imai M, et al. (2022). Therapeutic efficacy of monoclonal antibodies and antivirals against sars-cov-2 omicron ba. 1 in Syrian hamsters. Nat Microbiol 7:1252–8.
  • Vardakis JC, Chou D, Tully BJ, et al. (2016). Investigating cerebral oedema using poroelasticity. Med Eng Phys 38:48–57.
  • Vardakis JC, Guo L, Peach TW, et al. (2019). Fluid-structure interaction for highly complex, statistically defined, biological media: homogenisation and a 3d multi-compartmental poroelastic model for brain biomechanics. J Fluids Struct 91:102641.
  • Vennepureddy A, Singh P, Rastogi R, et al. (2017). Evolution of ramucirumab in the treatment of cancer – a review of literature. J Oncol Pharm Pract 23:525–39.
  • Viola M, Sequeira J, Seiça R, et al. (2018). Subcutaneous delivery of monoclonal antibodies: how do we get there? J Control Release 286:301–14.
  • Wang HF. (2017). Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton: Princeton University Press.
  • Wiig H, Swartz MA. (2012). Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol Rev 92:1005–60.
  • Wirthl B, Kremheller J, Schrefler BA, Wall WA. (2020). Extension of a multiphase tumour growth model to study nanoparticle delivery to solid tumours. PLoS One 15:e0228443.
  • Wright RT, Hayes D, Sherwood PJ, et al. (2018). Auc measurements of diffusion coefficients of monoclonal antibodies in the presence of human serum proteins. Eur Biophys J 47:709–22.
  • Zhang HJ, Jeng D-S, Seymour BR, et al. (2012). Solute transport in partially-saturated deformable porous media: application to a landfill clay liner. Adv Water Resour 40:1–10.
  • Zheng F, Hou P, Corpstein CD, et al. (2021a). Multiphysics modeling and simulation of subcutaneous injection and absorption of biotherapeutics: model development. Pharm Res 38:607–24.
  • Zheng F, Hou P, Corpstein CD, et al. (2021b). Multiscale pharmacokinetic modeling of systemic exposure of subcutaneously injected biotherapeutics. J Control Release 337:407–16.
  • Zou P, Wang F, Wang J, et al. (2021). Impact of injection sites on clinical pharmacokinetics of subcutaneously administered peptides and proteins. J Control Release 336:310–21.