3,045
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Formulation and characterization of lamotrigine nasal insert targeted brain for enhanced epilepsy treatment

, , &
Article: 2163321 | Received 21 Oct 2022, Accepted 19 Dec 2022, Published online: 29 Dec 2022

References

  • Abdellatif AA, El-Telbany DFA, Zayed G, Al-Sawahli MM. (2019). Hydrogel containing PEG-coated fluconazole nanoparticles with enhanced solubility and antifungal activity. J Pharm Innov 14:1–11.
  • Abdellatif MM, Khalil IA, Khalil MA. (2017). Sertaconazole nitrate loaded nanovesicular systems for targeting skin fungal infection: in-vitro, ex-vivo and in-vivo evaluation. Int J Pharm 527:1–11.
  • Abdelmonem R, Azer MS, Makky A, et al. (2020). Development, characterization, and in-vivo pharmacokinetic study of lamotrigine solid self-nanoemulsifying drug delivery system. Drug Des Devel Ther 14:4343–4362.
  • Abdelmonem R, El Nabarawi M, Attia A. (2018). Development of novel bioadhesive granisetron hydrochloride spanlastic gel and insert for brain targeting and study their effects on rats. Drug Deliv 25:70–77.
  • Abo El-Enin HA, Ahmed MF, Naguib IA, et al. (2022). Utilization of polymeric micelles as a lucrative platform for efficient brain deposition of olanzapine as an antischizophrenic drug via intranasal delivery. Pharmaceuticals 15:249.
  • Abo El-Enin HA, Mostafa RE, Ahmed MF, et al. (2022). Assessment of nasal-brain-targeting efficiency of new developed mucoadhesive emulsomes encapsulating an anti-migraine drug for effective treatment of one of the major psychiatric disorders symptoms. Pharmaceutics 14:410.
  • Acosta E. (2009). Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14:3–15.
  • Alfadhel M, Puapermpoonsiri U, Ford SJ, et al. (2011). Lyophilized inserts for nasal administration harboring bacteriophage selective for Staphylococcus aureus: in vitro evaluation. Int J Pharm 416:280–7.
  • Allahverdiyev O, Dzhafar S, Berköz M, Yıldırım M. (2018). Advances in current medication and new therapeutic approaches in epilepsy. Eastern J Med 23:48–59.
  • Al-Mahallawi AM, Khowessah OM, Shoukri RA. (2014). Nano-transfersomal ciprofloxacin loaded vesicles for non-invasive trans-tympanic ototopical delivery: in-vitro optimization, ex-vivo permeation studies, and in-vivo assessment. Int J Pharm 472:304–14.
  • Alzubaidi AF, El-Helw A-RM, Ahmed TA, Ahmed OA. (2017). The use of experimental design in the optimization of risperidone biodegradable nanoparticles: in vitro and in vivo study. Artif Cells Nanomed Biotechnol 45:313–320.
  • Ammar HO, Ghorab MM, Mahmoud AA, Higazy IM. (2018). Lamotrigine loaded poly-ɛ-(d, l-lactide-co-caprolactone) nanoparticles as brain delivery system. Eur J Pharm Sci 115:77–87.
  • Aziz DE, Abdelbary AA, Elassasy AI. (2018). Implementing central composite design for developing transdermal diacerein-loaded niosomes: Ex vivo permeation and in vivo deposition. Curr Drug Deliv 15:1330–1342.
  • Badria F, Mazyed E. (2020). Formulation of nanospanlastics as a promising approach for improving the topical delivery of a natural leukotriene inhibitor (3- acetyl-11-Keto-β-boswellic Acid): statistical optimization, in vitro characterization, and ex vivo permeation study. Drug Des Devel Ther 14:3697–3721.
  • Bertram U, Bodmeier R. (2006). In situ gelling, bioadhesive nasal inserts for extended drug delivery: in vitro characterization of a new nasal dosage form. Eur J Pharm Sci 27:62–71.
  • Betchel NF, Fariba K, Saadabadi A. (2022). Lamotrigine. Treasure Island, FL: StatPearls.
  • Bhunchu S, Rojsitthisak P, Rojsitthisak P. (2015). Effects of preparation parameters on the characteristics of chitosan–alginate nanoparticles containing curcumin diethyl disuccinate. J Drug Delivery Sci Technol 28:64–72.
  • Castel-Branco M, Lebre V, Falcao A, et al. (2003). Relationship between plasma and brain levels and the anticonvulsant effect of lamotrigine in rats. Eur J Pharmacol 482:163–8.
  • Castel-Branco MM, Falcão AC, Figueiredo IV, Caramona MM. (2005). Lamotrigine pharmacokinetic/pharmacodynamic modelling in rats. Fundam Clin Pharmacol 19:669–75.
  • Costantino HR, Illum L, Brandt G, et al. (2007). Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm 337:1–24.
  • Dae-Duk K. (2007). Drug absorbtionstudies: in situ, in vitro and insilicomodels. USA: Springer.
  • De Jesús Valle MJ, Zarzuelo Castañeda A, Maderuelo C, et al. (2022). Development of a mucoadhesive vehicle based on lyophilized liposomes for drug delivery through the sublingual mucosa. Pharmaceutics 14:1497.
  • Dehghan MHG, Marzuka M. (2014). Lyophilized chitosan/xanthan polyelectrolyte complex based mucoadhesive inserts for nasal delivery of promethazine hydrochloride. Iran J Pharm Res 13:769–784.
  • El Menshawe SF, Nafady MM, Aboud HM, et al. (2019). Transdermal delivery of fluvastatin sodium via tailored spanlastic nanovesicles: mitigated Freund’s adjuvant-induced rheumatoid arthritis in rats through suppressing p38 MAPK signaling pathway. Drug Deliv 26:1140–1154.
  • El Nabarawi M, Abdelmonem R, Attia A. (2016). Formulation and evaluation of intranasal granisetron hydrochloride spanlastic dispersions for postoperative and cancer associated therapies. Inventi Impact Pharm Tech 2016:126–31.
  • El-Far SW, Abo El-Enin HA, Abdou EM, et al. (2022). Targeting colorectal cancer cells with niosomes systems loaded with two anticancer drugs models; comparative in vitro and anticancer studies. Pharmaceuticals 15:816.
  • El-Hadidy G. (2010). A pharmaceutical study on topical antifungal drug. [M. Sc. Thesis]. Faculty of Pharmacy, Cairo University.
  • El-Nabarawi M, Makky A, El-Setouhy D, et al. (2012). Development and characterization of ketorolac tromethamine (KT) orobuccal films. Int J Pharm Pharm Sci 4:186–93.
  • El-Nabarawi MA, Tayel SA, Soliman NA, Enin HAA. (2013). Development and evaluation of fixed dose bi therapy sublingual tablets for treatment stress hypertension and anxiety. J Pharm Bioallied Sci 5:191–201.
  • Fahmy AM, El-Setouhy DA, Habib BA, Tayel SA. (2019). Enhancement of transdermal delivery of haloperidol via spanlastic dispersions: entrapment efficiency vs. particle size. AAPS Pharmscitech 20:1–13.
  • Fahmy AM, El-Setouhy DA, Ibrahim AB, et al. (2018). Penetration enhancer-containing spanlastics (PECSs) for transdermal delivery of haloperidol: in vitro characterization, ex vivo permeation and in vivo biodistribution studies. Drug Deliv 25:12–22.
  • Farghaly DA, Aboelwafa AA, Hamza MY, Mohamed MI. (2017). Topical delivery of fenoprofen calcium via elastic nano-vesicular spanlastics: Optimization using experimental design and in vivo evaluation. AAPS PharmSciTech 18:2898–2909.
  • Fukami J, Ozawa A, Yoshihashi Y, et al. (2005). Development of fast disintegrating compressed tablets using amino acid as disintegratation accelerator: evaluation of wetting and disintegration of tablet on the basis of surface free energy. Chem Pharm Bull (Tokyo) 53:1536–9.
  • Gao K, Jiang X. (2006). Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int J Pharm 310:213–9.
  • Goldsmith DR, Wagstaff AJ, Ibbotson T, Perry CM. (2003). Lamotrigine. Drugs 63:2029–50.
  • Illum L. (2002). Nasal drug delivery: new developments and strategies. Drug Discov Today 7:1184–9.
  • Inal M, Muluk NB, Asal N, Alpua M. (2021). Peripheric smell regions in patients with temporal and frontal lobe epilepsies: an MRI evaluation. J Clin Neurosci 92:1–5.
  • Jadhav KR, Gambhire MN, Shaikh IM, et al. (2007). Nasal drug delivery system-factors affecting and applications. CDTH 2:27–38.
  • Junyaprasert VB, Teeranachaideekul V, Supaperm T. (2008). Effect of charged and non-ionic membrane additives on physicochemical properties and stability of niosomes. Aaps Pharmscitech 9:851–9.
  • Khan A, Imam SS, Aqil M, et al. (2016). Brain targeting of temozolomide via the intranasal route using lipid-based nanoparticles: brain pharmacokinetic and scintigraphic analyses. Mol Pharm 13:3773–3782.
  • Kipp J. (2004). The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm 284:109–22.
  • Komaiko J, McClements DJ. (2015). Low-energy formation of edible nanoemulsions by spontaneous emulsification: Factors influencing particle size. J Food Eng 146:122–128.
  • Law S, Huang K, Chou H. (2001). Preparation of desmopressin-containing liposomes for intranasal delivery. J Control Release 70:375–82.
  • Leng D, Thanki K, Fattal E, et al. (2018). Engineering of budesonide-loaded lipid-polymer hybrid nanoparticles using a quality-by-design approach. Int J Pharm 548:740–746.
  • Matsuo F. (1999). Lamotrigine. Epilepsia 40:s30–s36. s6.
  • Mazyed EA, Helal DA, Elkhoudary MM, et al. (2021). Formulation and optimization of nanospanlastics for improving the bioavailability of green tea epigallocatechin gallate. Pharmaceuticals 14:68.
  • Mistry A, Stolnik S, Illum L. (2015). Nose-to-brain delivery: investigation of the transport of nanoparticles with different surface characteristics and sizes in excised porcine olfactory epithelium. Mol Pharm 12:2755–66.
  • Mohan A, Madhavi M, Swetha G, Jyosthna P. (2015). Preparation, in vitro and in vivo characterization of solid dispersions of lamotrigine using solvent evaporation technique. IOSR J Pharm 5:54–9.
  • Musumeci T, Serapide MF, Pellitteri R, et al. (2018). Oxcarbazepine free or loaded PLGA nanoparticles as effective intranasal approach to control epileptic seizures in rodents. Eur J Pharm Biopharm 133:309–320.
  • Ould-Ouali L, Noppe M, Langlois X, et al. (2005). Self-assembling PEG-p (CL-co-TMC) copolymers for oral delivery of poorly water-soluble drugs: a case study with risperidone. J Control Release 102:657–68.
  • Pires PC, Rodrigues M, Alves G, Santos AO. (2022). Strategies to improve drug strength in nasal preparations for brain delivery of low aqueous solubility drugs. Pharmaceutics 14:588.
  • Restuinjaya LA, Simaremare ES, Pratiwi RD. (2019). Optimization of tween 80 and span 60 on cream ethanol extract the leaves matoa (Pometia pinnata) as an antioxidant. J Adv Pharm Pract 1:11–21.
  • Seager H. (1998). Drug-delivery products and the Zydis fast-dissolving dosage form. J Pharm Pharmacol 50:375–82.
  • Shamma RN, Sayed S, Sabry NA, El-Samanoudy SI. (2019). Enhanced skin targeting of retinoic acid spanlastics: in vitro characterization and clinical evaluation in acne patients. J Liposome Res 29:283–290.
  • Sharma A, Pahwa S, Bhati S, Kudeshia P. (2020). Spanlastics: A modern approach for nanovesicular drug delivery. Int J Pharm Sci Res 11:1057–65.
  • Shivhare U, Jain K, Mathur V, et al. (2009). Formulation development and evaluation of diclofenac sodium gel using water soluble polyacrylamide polymer. Digest J Nanomater Biostruct 4: 285–290.
  • Soleymani J, Jouyban-Gharamaleki V, Suleymanov TA, et al. (2017). Solubilization of lamotrigine using Tween 80 and ethylene glycol or propylene glycol. J Mol Liq 236:249–53.
  • Suri SS, Fenniri H, Singh B. (2007). Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2:16.
  • Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. (2015). Duodenum-triggered delivery of pravastatin sodium via enteric surface-coated nanovesicular spanlastic dispersions: development, characterization and pharmacokinetic assessments. Int J Pharm 483:77–88.
  • Yong CS, Jung J-H, Rhee J-D, et al. (2001). Physicochemical characterization and evaluation of buccal adhesive tablets containing omeprazole. Drug Dev Ind Pharm 27:447–55.
  • Yoshioka T, Sternberg B, Florence AT. (1994). Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60 and 80) and a sorbitan triester (Span 85). Int J Pharm 105:1–6.