1,183
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Design and evaluation of 32P-labeled hydroxyapatite nanoparticles for bone tumor therapy

, , , , , ORCID Icon & show all
Article: 2168791 | Received 08 Nov 2022, Accepted 10 Jan 2023, Published online: 23 Jan 2023

References

  • Banerjee S, Bagchi B, Bhandary S, et al. (2018). Antimicrobial and biocompatible fluorescent hydroxyapatite-chitosan nanocomposite films for biomedical applications. Colloids Surf B Biointerfaces 171:1–7.
  • De Lama-Odria MDC, Del Valle LJ. Puiggali (2022). Hydroxyapatite biobased materials for treatment and diagnosis of cancer. Int J Mol Sci 23.
  • Elsherbiny NM, Younis NN, Shaheen MA, et al. (2016). The synergistic effect between vanillin and doxorubicin in ehrlich ascites carcinoma solid tumor and MCF-7 human breast cancer cell line. Pathol Res Pract 212:767–77.
  • Kang NW, Lee JY, Kim DD. (2022). Hydroxyapatite-binding albumin nanoclusters for enhancing bone tumor chemotherapy. J Control Release 342:111–21.
  • Kavasi RM, Coelho CC, Platania V, et al. (2021). In vitro biocompatibility assessment of nano-hydroxyapatite. Nanomaterials (Basel) 11:1152.
  • Lawhn-Heath C, Fidelman N, Chee B, et al. (2021). Intraarterial peptide receptor radionuclide therapy using (90)Y-DOTATOC for hepatic metastases of neuroendocrine tumors. J Nucl Med 62:221–7.
  • Liu Y, Wu Y, Lin H, et al. (2018). Study on an injectable biomedical paste using cross-linked sodium hyaluronate as a carrier of hydroxyapatite particles. Carbohydr Polym 195:378–86.
  • Liu Y, Raina DB, Sebastian S, et al. (2021). Sustained and controlled delivery of doxorubicin from an in-situ setting biphasic hydroxyapatite carrier for local treatment of a highly proliferative human osteosarcoma. Acta Biomater 131:555–71.
  • Lorenzoni A, Capozza A, Artale S, et al. (2018). Impressive response to tandem treatment with [90Y]DOTATOC and [177Lu]DOTATOC in grade 3 pancreatic neuroendocrine carcinoma. Clin Nucl Med 43:506–8.
  • Pandi K, Viswanathan N. (2015). In situ precipitation of nano-hydroxyapatite in gelatin polymatrix towards specific fluoride sorption. Int J Biol Macromol 74:351–9.
  • Rajeswari A, Vimalnath KV, Sarma HD, et al. (2016). Hydroxyapatite (HA) microparticles labeled with (32)P - A promising option in the radiation synovectomy for inflamed joints. Appl Radiat Isot 116:85–91.
  • Rial R, Gonzalez-Durruthy M, Liu Z, et al. (2021). Advanced materials based on nanosized hydroxyapatite. Molecules 26:3190.
  • Safi S, Karimzadeh F, Labbaf S. (2018). Mesoporous and hollow hydroxyapatite nanostructured particles as a drug delivery vehicle for the local release of ibuprofen. Mater Sci Eng C Mater Biol Appl 92:712–9.
  • Santos C, Gomes P, Duarte JA, et al. (2017). Development of hydroxyapatite nanoparticles loaded with folic acid to induce osteoblastic differentiation. Int J Pharm 516:185–95.
  • Sun J, Wu T, Fan Q, et al. (2019). Comparative study of hydroxyapatite, fluor-hydroxyapatite and Si-substituted hydroxyapatite nanoparticles on osteogenic, osteoclastic and antibacterial ability. RSC Adv 9:16106–18.
  • Vimalnath KV, Chakraborty S, Rajeswari A, et al. (2015). Radiochemistry, pre-clinical studies and first clinical investigation of 90Y-labeled hydroxyapatite (HA) particles prepared utilizing 90Y produced by (n,gamma) route. Nucl Med Biol 42:455–64.
  • Wijesinghe WP, Mantilaka MM, Premalal EV, et al. (2014). Facile synthesis of both needle-like and spherical hydroxyapatite nanoparticles: effect of synthetic temperature and calcination on morphology, crystallite size and crystallinity. Mater Sci Eng C Mater Biol Appl 42:83–90.
  • Xu K, Wang Y, Xie Y, et al. (2022). Anti-melanoma effect and action mechanism of a novel chitosan-based composite hydrogel containing hydroxyapatite nanoparticles. Regen Biomater 9:rbac050.
  • Yang X, Zhai D, Song J, et al. (2020). Rhein-PEG-nHA conjugate as a bone targeted drug delivery vehicle for enhanced cancer chemoradiotherapy. Nanomedicine 27:102196.
  • Ying Liu YT, Tian Y, Wu J, et al. (2019). Gadolinium-doped hydroxyapatite nanorods as T1 contrast agents and drug carriers for breast cancer therapy. ACS Appl Nano Mater 2:1194–201.
  • Zhang YG, Zhu YJ, Chen F, et al. (2017). Biocompatible, ultralight, strong hydroxyapatite networks based on hydroxyapatite microtubes with excellent permeability and ultralow thermal conductivity. ACS Appl Mater Interfaces 9:7918–28.