2,675
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Silk nanoparticles for the protection and delivery of guava leaf (Psidium guajava L.) extract for cosmetic industry, a new approach for an old herb

ORCID Icon, , , , , & show all
Article: 2168793 | Received 21 Nov 2022, Accepted 10 Jan 2023, Published online: 24 Jan 2023

References

  • Altiok E, Bayçin D, Bayraktar O, Ülkü S. (2008). Isolation of polyphenols from the extracts of olive leaves (Olea europaea L.) by adsorption on silk fibroin. Sep Purif Technol 62:1–9.
  • Altman GH, Diaz F, Jakuba C, et al. (2003). Silk-based biomaterials. Biomaterials 24:401–16.
  • Alvarez-Suarez JM, Giampieri F, Gasparrini M, et al. (2018). Guava (Psidium guajava L. cv. Red Suprema) crude extract protect human dermal fibroblasts against cytotoxic damage mediated by oxidative stress. Plant Foods Hum Nutr 73:18–24.
  • Bayçin D, Altiok E, Ülkü S, Bayraktar O. (2007). Adsorption of olive leaf (Olea europaea L.) antioxidants on silk fibroin. J Agric Food Chem 55:1227–36.
  • Chen HY, Yen GC. (2007). Antioxidant activity and free radical-scavenging capacity of extracts from guava (Psidium guajava L.) leaves. Food Chem 101:686–94.
  • Chomchalao P, Nimtrakul P, Pham DT, Tiyaboonchai W. (2020). Development of amphotericin B-loaded fibroin nanoparticles: a novel approach for topical ocular application. J Mater Sci 55:5268–79.
  • Cory H, Passarelli S, Szeto J, et al. (2018). The role of polyphenols in human health and food systems: a mini-review. Front Nutr 5:87.
  • Crivelli B, Bari E, Perteghella S, et al. (2019). Silk fibroin nanoparticles for celecoxib and curcumin delivery: ROS-scavenging and anti-inflammatory activities in an in vitro model of osteoarthritis. Eur J Pharm Biopharm 137:37–45.
  • Desai KGH, Park HJ. (2005). Recent developments in microencapsulation of food ingredients. Drying Technol 23:1361–94. https://doi.org/10.1081/DRT-200063478.
  • Falcão L, Araújo MEM. (2013). Tannins characterization in historic leathers by complementary analytical techniques ATR-FTIR, UV-Vis and chemical tests. J Cult Herit 14:499–508.
  • Gutiérrez RMP, Mitchell S, Solis RV. (2008). Psidium guajava: a review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 117:1–27.
  • Hanuka Katz I, Nagar EE, Okun Z, Shpigelman A. (2020). The link between polyphenol structure, antioxidant capacity and shelf-life stability in the presence of fructose and ascorbic acid. Molecules 25:225.
  • Hcini K, Lozano-Pérez AA, Cenis JL, et al. (2021). Extraction and encapsulation of phenolic compounds of tunisian rosemary (Rosmarinus officinalis L.) extracts in silk fibroin nanoparticles. Plants (Basel, Switzerland) 10:2312.
  • Hộ PH. (1999). Cây cỏ Việt Nam. Nhà xuất bản trẻ, 1–1027.
  • Houstis N, Rosen ED, Lander ES. (2006). Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440:944–8.
  • Hu X, Kaplan D, Cebe P. (2006). Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules 39:6161–70.
  • Huda-Faujan N, Noriham A. Abdullah Sani N, Babji A. (2009). Antioxidant activity of plants methanolic extracts containing phenolic compounds centella antioxi. Afr J Info 8:484–9.
  • Iamjud K, Banyen N, Boonprakob U, Thaipong K. (2014). Ascorbic acid, total phenolics and antioxidant activity of guava leaf extracts. Acta Hortic 1024:367–72.
  • Jiménez-Escrig A, Rincón M, Pulido R, Saura-Calixto F. (2001). Guava fruit (Psidium guajava L.) as a new source of antioxidant dietary fiber. J Agric Food Chem 49:5489–93.
  • Lozano-Pérez AA, Montalbán MG, Aznar-Cervantes SD, et al. (2014). Production of silk fibroin nanoparticles using ionic liquids and high-power ultrasounds. J Appl Polym Sci 132:41702.
  • Lozano-Pérez AA, Gil AL, Pérez SA, et al. (2015). Antitumor properties of platinum(IV) prodrug-loaded silk fibroin nanoparticles. Dalton Trans 44:13513–21.
  • Lozano-Pérez AA, Rivero HC, del Carmen Pérez Hernández M, et al. (2017). Silk fibroin nanoparticles: efficient vehicles for the natural antioxidant quercetin. Int J Pharm 518:11–9.
  • Lozano-Pérez AA, Rodriguez-Nogales A, Ortiz-Cullera V, et al. (2014). Silk fibroin nanoparticles constitute a vector for controlled release of resveratrol in an experimental model of inflammatory bowel disease in rats. Int J Nanomed 9:4507–20.
  • Manikandan R, Vijaya Anand A, Rengaraj RL, et al. (2017). In vitro antioxidant activity of extracts of Psidium guajava leaves. Orig Artic PTB Reports 3:50–4.
  • Microencapsulation: process, techniques and applications. (n.d.). Semantic Scholar.
  • Miean KH, Mohamed S. (2001). Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem 49:3106–12.
  • Misra K, Seshadri TR. (1968). Chemical components of the fruits of Psidium guava. Phytochemistry 7:641–5.
  • Mohammadinejad R, Shavandi A, Raie DS, et al. (2019). Plant molecular farming: production of metallic nanoparticles and therapeutic proteins using green factories. Green Chem 21:1845–65.
  • Montalbán MG, Coburn JM, Lozano-Pérez AA, et al. (2018). Production of curcumin-loaded silk fibroin nanoparticles for cancer therapy. Nanomater (Basel, Switzerland) 8:126.
  • Nantitanon W, Yotsawimonwat S, Okonogi S. (2010). Factors influencing antioxidant activities and total phenolic content of guava leaf extract, LWT - Food. Sci Technol 43:1095–103.
  • Nguyen PH, De Tran V, Pham DT, et al. (2021). Use of and attitudes towards herbal medicine during the COVID-19 pandemic: a cross-sectional study in Vietnam. Eur J Integr Med 44:101328.
  • Nguyen QV, Huyen B, Thi B, et al. (2022). Impact of different drying temperatures on in vitro antioxidant and antidiabetic activities and phenolic compounds of wild guava leaves collected in the central highland of Vietnam. Nat Prod Commun 17.
  • Pechanova O, Dayar E, Cebova M. (2020). Therapeutic potential of polyphenols-loaded polymeric nanoparticles in cardiovascular system. Molecules 25:3322.
  • Pham DT, Saelim N, Cornu R, et al. (2020a). Crosslinked fibroin nanoparticles: investigations on biostability, cytotoxicity, and cellular internalization. Pharmaceuticals (Basel, Switzerland) 13:86.
  • Pham DT, Saelim N, Tiyaboonchai W. (2018). Crosslinked fibroin nanoparticles using EDC or PEI for drug delivery: physicochemical properties, crystallinity and structure. J Mater Sci 53:14087–103.
  • Pham DT, Saelim N, Tiyaboonchai W. (2019). Alpha mangostin loaded crosslinked silk fibroin-based nanoparticles for cancer chemotherapy. Colloids Surf B Biointerfaces 181:705–13.
  • Pham DT, Saelim N, Tiyaboonchai W. (2020b). Paclitaxel loaded EDC-crosslinked fibroin nanoparticles: a potential approach for colon cancer treatment, Drug. Drug Deliv Transl Res 10:413–24.
  • Pham DT, Tetyczka C, Hartl S, et al. (2020c). Comprehensive investigations of fibroin and poly(ethylenimine) functionalized fibroin nanoparticles for ulcerative colitis treatment. J Drug Deliv Sci Technol 57:101484.
  • Pham DT, Thao NTP, Thuy BTP, et al. (2022). Silk fibroin hydrogel containing Sesbania sesban L. extract for rheumatoid arthritis treatment. Drug Deliv 29:882–8.
  • Pham DT, Tiyaboonchai W. (2020). Fibroin nanoparticles: a promising drug delivery system. Drug Deliv 27:431–48.
  • Pham DT, Tiyaboonchai W. (2021). Fibroin-coated poly(ethylenimine)-docusate nanoparticles as a novel drug delivery system. Curr Sci 121:775–80.
  • Reiter RJ. (1995). Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J 9:526–33.
  • Saénz C, Tapia S, Chávez J, Robert P. (2009). Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chem 114:616–22.
  • Seo J, Lee S, Elam M, et al. (2014). Study to find the best extraction solvent for use with guava leaves (Psidium guajava L.) for high antioxidant efficacy. Food Sci Nutr 2:174–80.
  • Shirur D, Shruthi A, Roshan S, Sharma Timilsina SS. (2013). A review on the medicinal plant Psidium guajava Linn. (Myrtaceae). J Drug Delivery Ther 3:162–8.
  • Singleton VL, Rossi JA. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–58.
  • Soleimani M, Arzani A, Arzani V, Roberts TH. (2022). Phenolic compounds and antimicrobial properties of mint and thyme. J Herb. Med 36:100604.
  • Sukumaran ST, Sugathan S, Abdulhameed S. (2020). Herbal cosmeceuticals. In: Plant metabolites: methods, applications and prospects. 217–38. Singapore: Springer.
  • Tachakittirungrod S, Okonogi S, Chowwanapoonpohn S. (2007). Study on antioxidant activity of certain plants in Thailand: mechanism of antioxidant action of guava leaf extract. Food Chem 103:381–8.
  • Tailor CS, Goyal A. (2014). Antioxidant activity by DPPH radical scavenging method of Ageratum conyzoides Linn. leaves. Am J Ethnomed 1:244–9.
  • Thaipong K, Boonprakob U, Cisneros-Zevallos L, Byrne DH. (2005). Hydrophilic and lipophilic antioxidant activities of guava fruits. Southeast Asian J Trop Med Public Health 36:254–7.
  • Tran VD, Pham DT, Cao TTN, Bahlol M, Dewey RS, Le MH, Nguyen VA, et al. (2022). Perspectives on COVID-19 prevention and treatment using herbal medicine in Vietnam: a cross-sectional study. Ann Ig 34:515–31.
  • Yang B, Dong Y, Wang F, Zhang Y. (2020). Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules 25:4613.
  • Yusuf U, Ocheje J. (2019). Toxicological studies of aqueous leaf extract of Psidium guajava in Albino rats, Res J Pharmacol Pharmacodyn 1:70–6.
  • Zhang YQ, Shen WD, Xiang RL, et al. (2007). Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization. J Nanopart Res 9:885–900.