3,192
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Development of an apolipoprotein E mimetic peptide–lipid conjugate for efficient brain delivery of liposomes

ORCID Icon, , , , , ORCID Icon, , & ORCID Icon show all
Article: 2173333 | Received 03 Oct 2022, Accepted 26 Dec 2022, Published online: 31 Jan 2023

References

  • Bach A, Clausen BH, Møller M, et al. (2012). A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage. Proc Natl Acad Sci U S A 109:1–10.
  • Bana L, Minniti S, Salvati E, et al. (2014). Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Aβ aggregation features and cross the blood–brain-barrier: implications for therapy of Alzheimer disease. Nanomedicine 10:1583–90.
  • Couch JA, Yu YJ, Zhang Y, et al. (2013). Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier. Sci Transl Med 5:183ra57.
  • Demeule M, Régina A, Ché C, et al. (2008). Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther 324:1064–72.
  • Eigenmann DE, Xue G, Kim KS, et al. (2013). Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies. Fluids Barriers CNS 10:33.
  • Fumoto S, Kinoshita E, Ohta K, et al. (2020). A pH-adjustable tissue clearing solution that preserves lipid ultrastructures: suitable tissue clearing method for DDS evaluation. Pharmaceutics 12:1070.
  • Gaillard PJ, Appeldoorn CCM, Dorland R, et al. (2014). Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PLoS One 9:e82331.
  • Gao H. (2016). Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B 6:268–86.
  • Grafals-Ruiz N, Rios-Vicil CI, Lozada-Delgado EL, et al. (2020). Brain targeted gold liposomes improve rnai delivery for glioblastoma. Int J Nanomedicine 15:2809–28.
  • Hagimori M, Chinda Y, Suga T, et al. (2018). Synthesis of high functionality and quality mannose-grafted lipids to produce macrophage-targeted liposomes. Eur J Pharm Sci 123:153–61.
  • Huwyler J, Wu D, Pardridge WM. (1996). Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci U S A 93:14164–9.
  • Jiang Y, Zhang J, Meng F, Zhong Z. (2018). Apolipoprotein E peptide-directed chimeric polymersomes mediate an ultrahigh-efficiency targeted protein therapy for glioblastoma. ACS Nano 12:11070–9.
  • Kato N, Sato T, Fuchigami Y, et al. (2022). Synthesis and evaluation of a novel adapter lipid derivative for preparation of cyclic peptide-modified PEGylated liposomes: application of cyclic RGD peptide. Eur J Pharm Sci 176:106239.
  • Kawakami S, Suga T. (2020). Development of Nano-DDS carriers for control of spatial distribution using multi-color deep imaging. Yakugaku Zasshi 140:633–40.
  • Kristensen M, Kucharz K, Felipe Alves Fernandes E, et al. (2020). Conjugation of therapeutic PSD-95 inhibitors to the cell-penetrating peptide tat affects blood–brain barrier adherence, uptake, and permeation. Pharmaceutics 12:661.
  • Kucharz K, Kristensen K, Johnsen KB, et al. (2021). Post-capillary venules are the key locus for transcytosis-mediated brain delivery of therapeutic nanoparticles. Nat Commun 12:4121.
  • Kumar V, Patiyal S, Kumar R, et al. (2021). B3Pdb: an archive of blood–brain barrier-penetrating peptides. Brain Struct Funct 226:2489–95.
  • Kumthekar P, Tang S-C, Brenner AJ, et al. (2020). ANG1005, a brain-penetrating peptide–drug conjugate, shows activity in patients with breast cancer with leptomeningeal carcinomatosis and recurrent brain metastases. Clin Cancer Res 26:2789–99.
  • Lee JH, Engler JA, Collawn JF, Moore BA. (2001). Receptor mediated uptake of peptides that bind the human transferrin receptor. Eur J Biochem 268:2004–12.
  • Lehtinen J, Magarkar A, Stepniewski M, et al. (2012). Analysis of cause of failure of new targeting peptide in PEGylated liposome: molecular modeling as rational design tool for nanomedicine. Eur J Pharm Sci 46:121–30.
  • Li Y, Song Y, Zhao L, et al. (2008). Direct labeling and visualization of blood vessels with lipophilic carbocyanine dye DiI. Nat Protoc 3:1703–8.
  • Libeu CP, Lund-Katz S, Phillips MC, et al. (2001). New Insights into the heparan sulfate proteoglycan-binding activity of apolipoprotein E. J Biol Chem 276:39138–44.
  • Matsui T, Yoshino A, Tanaka M. (2020). A trip of peptides to the brain. Food Prod Process and Nutr 2:30.
  • Morito T, Harada R, Iwata R, et al. (2021). Synthesis and pharmacokinetic characterisation of a fluorine-18 labelled brain shuttle peptide fusion dimeric affibody. Sci Rep 11:2588.
  • Nag O, Awasthi V. (2013). Surface engineering of liposomes for stealth behavior. Pharmaceutics 5:542–69.
  • Niewoehner J, Bohrmann B, Collin L, et al. (2014). Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81:49–60.
  • Ogawa K, Fuchigami Y, Hagimori M, et al. (2018). Efficient gene transfection to the brain with ultrasound irradiation in mice using stabilized bubble lipopolyplexes prepared by the surface charge regulation method. IJN 13:2309–20.
  • Ogawa K, Kato N, Kawakami S. (2020). Recent strategies for targeted brain drug delivery. Chem Pharm Bull (Tokyo) 68:567–82.
  • Oller-Salvia B, Sánchez-Navarro M, Giralt E, Teixidó M. (2016). Blood–brain barrier shuttle peptides: an emerging paradigm for brain delivery. Chem Soc Rev 45:4690–707.
  • Re F, Cambianica I, Zona C, et al. (2011). Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model. Nanomedicine 7:551–9.
  • Rousselle C, Clair P, Lefauconnier J-M, et al. (2000). New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy. Mol Pharmacol 57:679–86.
  • Ruan S, Zhou Y, Jiang X, Gao H. (2021). Rethinking CRITID procedure of brain targeting drug delivery: circulation, blood brain barrier recognition, intracellular transport, diseased cell targeting, internalization, and drug release. Adv Sci (Weinh) 8:2004025.
  • Sauer I, Dunay IR, Weisgraber K, et al. (2005). An apolipoprotein E-derived peptide mediates uptake of sterically stabilized liposomes into brain capillary endothelial cells. Biochemistry 44:2021–9.
  • Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. (1999). In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–72.
  • Suga T, Fuchigami Y, Hagimori M, Kawakami S. (2017). Ligand peptide-grafted PEGylated liposomes using HER2 targeted peptide-lipid derivatives for targeted delivery in breast cancer cells: the effect of serine-glycine repeated peptides as a spacer. Int J Pharm 521:361–4.
  • Suga T, Kato N, Hagimori M, et al. (2018). Development of high-functionality and -quality lipids with RGD peptide ligands: application for PEGylated liposomes and analysis of intratumoral distribution in a murine colon cancer model [research-article]. Mol Pharmaceutics 15:4481–90.
  • Urich E, Schmucki R, Ruderisch N, et al. (2015). Cargo delivery into the brain by in vivo identified transport peptides. Sci Rep 5:14104.
  • Uwamori H, Ono Y, Yamashita T, et al. (2019). Comparison of organ-specific endothelial cells in terms of microvascular formation and endothelial barrier functions. Microvasc Res 122:60–70.
  • van Rooy I, Mastrobattista E, Storm G, et al. (2011). Comparison of five different targeting ligands to enhance accumulation of liposomes into the brain. J Control Release 150:30–6.
  • Wang D, El-Amouri SS, Dai M, et al. (2013). Engineering a lysosomal enzyme with a derivative of receptor-binding domain of apoE enables delivery across the blood–brain barrier. Proc Natl Acad Sci U S A 110:2999–3004.
  • Weksler B, Romero IA, Couraud P-O. (2013). The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 10:16.
  • Yao H, Wang K, Wang Y, et al. (2015). Enhanced blood–brain barrier penetration and glioma therapy mediated by a new peptide modified gene delivery system. Biomaterials 37:345–52.
  • Yasaswi PS, Shetty K, Yadav KS. (2021). Temozolomide nano enabled medicine: promises made by the nanocarriers in glioblastoma therapy. J Control Release 336:549–71.
  • Zhan C, Li B, Hu L, et al. (2011). Micelle-based brain-targeted drug delivery enabled by a nicotine acetylcholine receptor ligand. Angew Chem Int Ed Engl 50:5482–5.