2,222
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Co-delivery of amphotericin B and pentamidine loaded niosomal gel for the treatment of Cutaneous leishmaniasis

, , ORCID Icon, , , , , , , , & ORCID Icon show all
Article: 2173335 | Received 17 Nov 2022, Accepted 16 Jan 2023, Published online: 01 Feb 2023

References

  • Abdelbary A, AbouGhaly M. (2015). Design and optimization of topical methotrexate loaded niosomes for enhanced management of psoriasis: application of Box–Behnken design, in-vitro evaluation and in-vivo skin deposition study. Int J Pharm 485:1–17.
  • Adler-Moore J, Lewis RE, Brüggemann RJ, et al. (2019). Preclinical safety, tolerability, pharmacokinetics, pharmacodynamics, and antifungal activity of liposomal amphotericin B. Clin Infect Dis 68:S244–S259.
  • Akbari J, Saeedi M, Enayatifard R, et al. (2020). Curcumin Niosomes (curcusomes) as an alternative to conventional vehicles: a potential for efficient dermal delivery. J Drug Deliv Sci Technol 60:102035.
  • Ali Z, Zahid F, Sohail S, et al. (2022). Transdermal delivery of allopurinol-loaded nanostructured lipid carrier in the treatment of gout. BMC Pharmacol Toxicol 23:86.
  • Alvar J, Vélez ID, Bern C, et al. (2012). Leishmaniasis worldwide and global estimates of its incidence. PloS One 7:e35671.
  • Alves P, Pohlmann A, Guterres S. (2005). Semisolid topical formulations containing nimesulide-loaded nanocapsules, nanospheres or nanoemulsion: development and rheological characterization. Pharmazie 60:900–4.
  • Andleeb M, Shoaib K, Daniyal M. (2021). Development, characterization and stability evaluation of topical gel loaded with ethosomes containing Achillea millefolium L. Front Pharmacol 12:603227.
  • Bartelds R, Nematollahi MH, Pols T, et al. (2018). Niosomes, an alternative for liposomal delivery. PloS One 13:e0194179.
  • Bae YH, Park K. (2011). Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198–205.
  • Bahraminejad S, Pardakhty A, Sharifi I, et al. (2022). Preparation and evaluation of physicochemical properties and anti-leishmanial activity of zirconium/tioxolone niosomes against Leishmania major. Arab J Chem 15:104156.
  • Batool S, Zahid F, Ud-Din F, et al. (2021). Macrophage targeting with the novel carbopol-based miltefosine-loaded transfersomal gel for the treatment of Cutaneous leishmaniasis: in vitro and in vivo analyses. Drug Dev Ind Pharm 47:440–53.
  • Berger J, Reist M, Mayer JM, et al. (2004). Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34.
  • Bezerra-Souza A, de Jesus JA, Laurenti MD, et al. (2021). Nanoemulsified butenafine for enhanced performance against experimental Cutaneous leishmaniasis. J. Immunol Res 2021:1–13.
  • Bhardwaj P, Tripathi P, Gupta R, et al. (2020). Niosomes: a review on niosomal research in the last decade. J Drug Deliv Sci Technol 56:101581.
  • Bhardwaj P, Tripathi P, Gupta R, et al. (2020). Niosomes: a review on niosomal research in the last decade. J Drug Delivery Sci Technol 56:101581.
  • Bibi M, ud Din F, Anwar Y, et al. (2022). Cilostazol-loaded solid lipid nanoparticles: bioavailability and safety evaluation in an animal model. J Drug Deliv Sci Technol 74:103581.
  • Borborema SET, Schwendener RA, Osso JA, et al. (2011). Uptake and antileishmanial activity of meglumine antimoniate-containing liposomes in Leishmania (Leishmania) major-infected macrophages. Int J Antimicrob Agents 38:341–7.
  • Carneiro G, Aguiar MG, Fernandes AP, et al. (2012). Drug delivery systems for the topical treatment of Cutaneous leishmaniasis. Expert Opin Drug Deliv 9:1083–97.
  • Carolus H, Pierson S, Lagrou K, et al. (2020). Amphotericin B and other polyenes—Discovery, clinical use, mode of action and drug resistance. JoF 6:321.
  • Cerqueira BBS, Lasham A, Shelling AN, et al. (2017). Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells. Mater Sci Eng C Mater Biol Appl 76:593–600.
  • Chawla V, Saraf SA. (2012). Rheological studies on solid lipid nanoparticle based carbopol gels of aceclofenac. Colloids Surf B Biointerfaces 92:293–8.
  • Chaubey P, Mishra B. (2014). Mannose-conjugated chitosan nanoparticles loaded with rifampicin for the treatment of visceral leishmaniasis. Carbohydr Polym 101:1101–8.
  • Chen S, Hanning S, Falconer J, et al. (2019). Recent advances in non-ionic surfactant vesicles (niosomes): fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm 144:18–39.
  • Choudhury H, Gorain B, Pandey M, et al. (2019). Strategizing biodegradable polymeric nanoparticles to cross the biological barriers for cancer targeting. Int J Pharm 565:509–22.
  • Clayton KN, Salameh JW, Wereley ST, et al. (2016). Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics 10:054107.
  • Dar MJ, Din FU, Khan GM. (2018). Sodium stibogluconate loaded nano-deformable liposomes for topical treatment of leishmaniasis: macrophage as a target cell. Drug Deliv 25:1595–606.
  • Das S, Wong AB. (2020). Stabilization of ferulic acid in topical gel formulation via nanoencapsulation and pH optimization. Sci Rep 10:1–18.
  • Davies JQ, Gordon S. (2009). Isolation and culture of murine macrophages. Methods Mol Biol 290:91–103.
  • Din FU, Jin SG, Choi H-G. (2021). Particle and gel characterization of irinotecan-loaded double-reverse thermosensitive hydrogel. Polymers 13:551.
  • Gadelha EPN, Ramasawmy R, da Costa Oliveira B, et al. (2018). An open label randomized clinical trial comparing the safety and effectiveness of one, two or three weekly pentamidine isethionate doses (seven milligrams per kilogram) in the treatment of Cutaneous leishmaniasis in the Amazon Region. PLoS Negl Trop Dis 12:e0006850.
  • Ge X, Wei M, He S, et al. (2019). Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics 11:55.
  • Groll AH, Rijnders BJ, Walsh TJ, et al. (2019). Clinical pharmacokinetics, pharmacodynamics, safety and efficacy of liposomal amphotericin B. Clin Infect Dis 68:S260–S274.
  • Gugleva V, Titeva S, Rangelov S, et al. (2019). Design and in vitro evaluation of doxycycline hyclate niosomes as a potential ocular delivery system. Int J Pharm 567:118431.
  • Gurjar MS, Ali S, Akhtar M, et al. (2012). Efficacy of plant extracts in plant disease management. AS 03:425–33.
  • Hafiz S, Kyriakopoulos C. (2020). Pentamidine. Europe PMC.
  • Hailu A, Gebre-Michael T, Berhe N, et al. (2016). Leishmaniasis. In: Gyapong J, Boatin B, editor. Neglected tropical diseases-sub-Saharan Africa. e-book: Springer. 87–112.
  • Heidari F, Akbarzadeh I, Nourouzian D, et al. (2020). Optimization and characterization of tannic acid loaded niosomes for enhanced antibacterial and anti-biofilm activities. Adva Powder Technol 31:4768–81.
  • Imran B, ud Din F, Ali Z, et al. (2022). Statistically designed dexibuprofen loaded solid lipid nanoparticles for enhanced oral bioavailability. J Drug Deliv Sci and Technol 77:103904.
  • Jamshaid H, Din F. u, Khan GM. (2021). Nanotechnology based solutions for anti-leishmanial impediments: a detailed insight. J Nanobiotechnol 19:1–51.
  • Jamshaid H, Din FU, Nousheen K, et al. (2023). Mannosylated imiquimod-terbinafine co-loaded transethosomes for cutaneous leishmaniasis; assessment of its anti-leishmanial potential, in vivo safety and immune response modulation. Biomater Adv 145: 213266.
  • Jamshaid H, Din F. u, Malik M, et al. (2022). A cutback in Imiquimod cutaneous toxicity; comparative cutaneous toxicity analysis of Imiquimod nanotransethosomal gel with 5% marketed cream on the BALB/c mice. Sci Rep 12:21.
  • Jiao Y, Xie S, Baseer A, et al. (2023). Rectal administration of Celecoxib liquid suppositories with enhanced bioavailability and safety in rats. CDD 20:201–10.
  • Junyaprasert VB, Singhsa P, Suksiriworapong J, et al. (2012). Physicochemical properties and skin permeation of Span 60/Tween 60 niosomes of ellagic acid. Int J Pharm 423:303–11.
  • Khan AS, ud Din F, Ali Z, et al. (2021). Development, in vitro and in vivo evaluation of miltefosine loaded nanostructured lipid carriers for the treatment of Cutaneous leishmaniasis. Int J Pharm 593:120109.
  • Khan AU, Jamshaid H, ud Din F, et al. (2022). Designing, optimization and characterization of Trifluralin transfersomal gel to passively target Cutaneous leishmaniasis. J Pharm Sci 111:1798–811.
  • Khan MM, Zaidi SS, Siyal FJ, et al. (2023). Statistical optimization of co-loaded rifampicin and pentamidine polymeric nanoparticles for the treatment of Cutaneous leishmaniasis. J Drug Delivery Sci Technol 79:104005.
  • Khatoon M, Shah KU, Din FU, et al. (2017). Proniosomes derived niosomes: recent advancements in drug delivery and targeting. Drug Deliv 24:56–69.
  • Kumbhar D, Wavikar P, Vavia P. (2013). Niosomal gel of lornoxicam for topical delivery: in vitro assessment and pharmacodynamic activity. AAPS pharmscitech 14:1072–82.
  • Laniado-Laborín R, Cabrales-Vargas MN. (2009). Amphotericin B: side effects and toxicity. Rev Iberoam Micol 26:223–7.
  • Lanza JS, Pomel S, Loiseau PM, et al. (2019). Recent advances in amphotericin B delivery strategies for the treatment of leishmaniases. Expert Opin Drug Deliv 16:1063–79.
  • Maqsood S, Din FU, Khan SU, et al. (2022). Levosulpiride-loaded nanostructured lipid carriers for brain delivery with antipsychotic and antidepressant effects. Life Sci 311:121198.
  • Mesquita JT, Pinto EG, Taniwaki NN, et al. (2013). Lethal action of the nitrothiazolyl-salicylamide derivative nitazoxanide via induction of oxidative stress in Leishmania (L.) infantum. Acta Trop 128:666–73.
  • Mir M, Ishtiaq S, Rabia S, et al. (2017). Nanotechnology: from in vivo imaging system to controlled drug delivery. Nanoscale Res Lett 12:1–16.
  • Moolakkadath T, Aqil M, Ahad A, et al. (2018). Development of transethosomes formulation for dermal fisetin delivery: Box–Behnken design, optimization, in vitro skin penetration, vesicles–skin interaction and dermatokinetic studies. Artif Cells Nanomed Biotechnol 46:755–65.
  • Mostafavi M, Sharifi I, Farajzadeh S, et al. (2019). Niosomal formulation of amphotericin B alone and in combination with glucantime: in vitro and in vivo leishmanicidal effects. Biomed Pharmacother 116:108942.
  • Mushtaq A, Baseer A, Zaidi SS, et al. (2022). Fluconazole-loaded thermosensitive system: In vitro release, pharmacokinetics and safety study. J Drug Deliv Sci Technol 67:102972.
  • Nayak D, Tawale RM, Aranjani JM, et al. (2020). Formulation, optimization and evaluation of novel ultra-deformable vesicular drug delivery system for an anti-fungal drug. AAPS PharmSciTech 21:1–10.
  • Nowroozi F, Almasi A, Javidi J, et al. (2018). Effect of surfactant type, cholesterol content and various downsizing methods on the particle size of niosomes. Iran J Pharm Res 17:1–11.
  • Obata Y, Utsumi S, Watanabe H, et al. (2010). Infrared spectroscopic study of lipid interaction in stratum corneum treated with transdermal absorption enhancers. Int J Pharm 389:18–23.
  • Paarakh MP, Jose PA, Setty C, et al. (2018). Release kinetics–concepts and applications. Int J Pharm Res Technol 8:12–20.
  • Parizi MH, Farajzadeh S, Sharifi I, et al. (2019). Antileishmanial activity of niosomal combination forms of tioxolone along with benzoxonium chloride against Leishmania tropica. Korean J Parasitol 57:359–68.
  • Piccica M, Lagi F, Bartoloni A, et al. (2021). Efficacy and safety of Pentamidine isethionate for tegumentary and visceral human leishmaniasis: a systematic review. J Travel Med 6:1–13.
  • Rabia S, Khaleeq N, Batool S, et al. (2020). Rifampicin-loaded nanotransferosomal gel for treatment of Cutaneous leishmaniasis: passive targeting via topical route. Nanomedicine (Lond) 15:183–203.
  • Romero EL, Morilla MJ. (2008). Drug delivery systems against leishmaniasis? Still an open question. Expert Opin Drug Deliv 5:805–23.
  • Sabir F, Asad MI, Qindeel M, et al. (2019). Polymeric nanogels as versatile nanoplatforms for biomedical applications. J Nanomater 2019:1526186.
  • Salim MW, Shabbir K, Yousaf AM, et al. (2020). Preparation, in-vitro and in-vivo evaluation of Rifampicin and Vancomycin Co-loaded transfersomal gel for the treatment of Cutaneous leishmaniasis. J Drug Deliv Sci and Technol 60:101996.
  • Sameni J, Krigstin S, Jaffer SA, et al. (2018). Preparation and characterization of biobased microspheres from lignin sources. Ind Crops Prod 117:58–65.
  • Scott P, Novais FO. (2016). Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nat Rev Immunol 16:581–92.
  • Seguella L, Rinaldi F, Marianecci C, et al. (2020). Pentamidine niosomes thwart S100B effects in human colon carcinoma biopsies favouring wtp53 rescue. J Cell Mol Med 24:3053–63.
  • Shahnaz G, Edagwa BJ, McMillan J, et al. (2017). Development of mannose-anchored thiolated amphotericin B nanocarriers for treatment of visceral leishmaniasis. Nanomedicine (Lond) 12:99–115.
  • Shaji J, Lal M. (2014). Novel double loaded transferosomes: evidence of superior anti-inflammatory efficacy-a comparative study. Int J Curr Pharm Res 6:16–25.
  • Shirian S, Oryan A, Hatam GR, et al. (2013). Three Leishmania/L. species–L. infantum, L. major, L. tropica–as causative agents of mucosal leishmaniasis in Iran. Pathogens Global Health 107:267–72.
  • Shirsand S, Para M, Nagendrakumar D, et al. (2012). Formulation and evaluation of Ketoconazole niosomal gel drug delivery system. Int J Pharm Investig 2:201–7.
  • Sohrabi S, Haeri A, Mahboubi A, et al. (2016). Chitosan gel-embedded moxifloxacin niosomes: an efficient antimicrobial hybrid system for burn infection. Int J Biol Macromol 85:625–33.
  • Soto J, Paz D, Rivero D, et al. (2016). Intralesional pentamidine: a novel therapy for single lesions of Bolivian Cutaneous leishmaniasis. Am J Trop Med Hyg 94:852–6.
  • Steverding D. (2017). The history of leishmaniasis. Parasites Vectors 10:1–10.
  • Talebi V, Ghanbarzadeh B, Hamishehkar H, et al. (2021). Effects of different stabilizers on colloidal properties and encapsulation efficiency of vitamin D3 loaded nano-niosomes. J Drug Deliv Sci Technol 61:101284.
  • Thabet Y, Elsabahy M, Eissa NG. (2022). Methods for preparation of niosomes: a focus on thin-film hydration method. Methods 199:9–15.
  • Try C, Moulari B, Béduneau A, et al. (2016). Size dependent skin penetration of nanoparticles in murine and porcine dermatitis models. Eur J Pharm Biopharm 100:101–8.
  • ud Din F, Kim DW, Choi JY, et al. (2017). Irinotecan-loaded double-reversible thermogel with improved antitumor efficacy without initial burst effect and toxicity for intramuscular administration. Acta Biomater 54:239–48.
  • ud Din F, Mustapha O, Kim DW, et al. (2015). Novel dual-reverse thermosensitive solid lipid nanoparticle-loaded hydrogel for rectal administration of flurbiprofen with improved bioavailability and reduced initial burst effect. Eur J Pharm Biopharm 94:64–72.
  • ud Din F, Rashid R, Mustapha O, et al. (2015). Development of a novel solid lipid nanoparticles-loaded dual-reverse thermosensitive nanomicelle for intramuscular administration with sustained release and reduced toxicity. RSC Adv 5:43687–94.
  • ud Din F, Zeb A, Shah KU. (2019). Development, in-vitro and in-vivo evaluation of ezetimibe-loaded solid lipid nanoparticles and their comparison with marketed product. J Drug Delivery Sci Technol 51:583–90.
  • Valenta C. (2005). The use of mucoadhesive polymers in vaginal delivery. Adv Drug Deliv Rev 57:1692–712.
  • Vora B, Khopade AJ, Jain NK. (1998). Proniosome based transdermal delivery of levonorgestrel for effective contraception. J Control Release 54:149–65.
  • Wagh VD, Deshmukh OJ. (2010). Niosomes as ophthalmic drug delivery systems: a review. J Pharm Res 3:1558–63.
  • Zahid F, Batool S, Ali Z, et al. (2022). Antileishmanial agents co-loaded in transfersomes with enhanced macrophage uptake and reduced toxicity. AAPS PharmSciTech 23:1–18.
  • Zeb A, Arif ST, Malik M, et al. (2019). Potential of nanoparticulate carriers for improved drug delivery via skin. J. Pharm Investig 49:485–517.
  • Zeb A, Qureshi OS, Kim H-S, et al. (2016). Improved skin permeation of methotrexate via nanosized ultradeformable liposomes. Int J Nanomed 11:3813–24.
  • Zhang Y, Jing Q, Hu H, et al. (2020). Sodium dodecyl sulfate improved stability and transdermal delivery of salidroside-encapsulated niosomes via effects on zeta potential. Int J Pharm 580:119183.
  • Zheng Y, Ouyang W-Q, Wei Y-P, et al. (2016). Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study. Int J Nanomed 11:5971–87.