1,470
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Investigating the self-assembling of nicotinic hydrazide-based amphiphile into nano-range vesicles and its amphotericin B loading applications

, , , , ORCID Icon, , , ORCID Icon, ORCID Icon & show all
Article: 2174205 | Received 31 Oct 2022, Accepted 24 Jan 2023, Published online: 13 Feb 2023

References

  • Abdelkader H, Alani AW, Alany RG. (2014). Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv 21:1–13.
  • Abraham MJ, Murtola T, Schulz R, et al. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25.
  • Ali I, Rehman Ju, Ullah S, et al. (2018). Preliminary investigation of novel tetra-tailed macrocycle amphiphile based nano-vesicles for amphotericin B improved oral pharmacokinetics. Artif Cells Nanomed Biotechnol 46:S1204–14.
  • Ali I, Shah MR, Imran M. (2017). Synthesis of sulfur-based biocompatible nonionic surfactants and their nano-vesicle drug delivery. J Surfactants Deterg 20:1367–75.
  • Ali I, Shah MR, Yousuf S, et al. (2018). Hemolytic and cellular toxicology of a sulfanilamide-based nonionic surfactant: a niosomal carrier for hydrophobic drugs. Toxicol Res (Camb) 7:771–8.
  • Alqahtani MS, Kazi M, Alsenaidy MA, Ahmad MZ. (2021). Advances in oral drug delivery. Front Pharmacol 12:618411.
  • Alsarra IA, Bosela A, Ahmed S, Mahrous G. (2005). Proniosomes as a drug carrier for transdermal delivery of ketorolac. Eur J Pharm Biopharm 59:485–90.
  • Alsarra IA. (2009). Evaluation of proniosomes as an alternative strategy to optimize piroxicam transdermal delivery. J Microencapsul 26:272–8.
  • Bansal S, Kashyap CP, Aggarwal G, Harikumar S. (2012). A comparative review on vesicular drug delivery system and stability issues. Int J Res Pharm Chem 2:704–13.
  • Barratt GM. (2000). Therapeutic applications of colloidal drug carriers. Pharm Sci Technol Today 3:163–71.
  • Berendsen H, Grigera J, Straatsma T. (1987). The missing term in effective pair potentials. J Phys Chem 91:6269–71.
  • Burkhardt M, Martinez-Castro N, Tea S, et al. (2007). Polyisobutylene-block-poly (methacrylic acid) diblock copolymers: self-assembly in aqueous media. Langmuir 23:12864–74.
  • Butani D, Yewale C, Misra A. (2014). Amphotericin B topical microemulsion: formulation, characterization and evaluation. Colloids Surf B Biointerfaces 116:351–8.
  • Callari M, De Souza PL, Rawal A, Stenzel MH. (2017). The effect of drug loading on micelle properties: solid-state NMR as a tool to gain structural insight. Angew Chem 129:8561–5.
  • Cenni E, Granchi D, Avnet S, et al. (2008). Biocompatibility of poly (d, l-lactide-co-glycolide) nanoparticles conjugated with alendronate. Biomaterials 29:1400–11.
  • Ceren Ertekin Z, Sezgin Bayindir Z, Yuksel N. (2015). Stability studies on piroxicam encapsulated niosomes. Curr Drug Deliv 12:192–9.
  • Colozza C, Posteraro B, Santilli S, et al. (2012). In vitro activities of amphotericin B and AmBisome against Aspergillus isolates recovered from Italian patients treated for haematological malignancies. Int J Antimicrob Agents 39:440–3.
  • Dan N. (2017). Core–shell drug carriers: liposomes, polymersomes, and niosomes. In: Andronescu E, & Grumezescu AM, eds. Nanostructures for drug delivery. University Politehnica of Bucharest, 63–105.
  • Dodda LS, Cabeza de Vaca I, Tirado-Rives J, Jorgensen WL. (2017). LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res 45:W331–W336.
  • Elefanti A, Mouton JW, Krompa K, et al. (2013). Inhibitory and fungicidal effects of antifungal drugs against Aspergillus species in the presence of serum. Antimicrob Agents Chemother 57:1625–31.
  • Ensign LM, Cone R, Hanes J. (2012). Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 64:557–70.
  • Francescangeli O, Stanic V, Gobbi L, et al. (2003). Structure of self-assembled liposome-DNA-metal complexes. Phys Rev E Stat Nonlin Soft Matter Phys 67:011904.
  • Gaikwad VL, Choudhari PB, Bhatia NM, Bhatia MS. (2019). Characterization of pharmaceutical nanocarriers: in vitro and in vivo studies. In: Joseph E, Singhvi G, eds. Nanomaterials for drug delivery and therapy. Elsevier, 33–58.
  • Gershanik T, Benita S. (2000). Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur J Pharm Biopharm 50:179–88.
  • Griffin WC. (1949). Classification of surface-active agents by" HLB. J Soc Cosmet Chem 1:311–26.
  • Hao Y, Zhao F, Li N, et al. (2002). Studies on a high encapsulation of colchicine by a niosome system. Int J Pharm 244:73–80.
  • Harmsen S, McLaren AC, Pauken C, McLemore R. (2011). Amphotericin B is cytotoxic at locally delivered concentrations. Clin Orthop Relat Res 469:3016–21.
  • Helenius A, Simons K. (1975). Solubilization of membranes by detergents. Biochim Biophys Acta 415:29–79.
  • Hu C, Rhodes DG. (1999). Proniosomes: a novel drug carrier preparation. Int J Pharm 185:23–35.
  • Hu L, Kong D, Hu Q, et al. (2015). Evaluation of high-performance curcumin nanocrystals for pulmonary drug delivery both in vitro and in vivo. Nanoscale Res Lett 10:381.
  • Humphrey W, Dalke A, Schulten K. (1996). VMD: visual molecular dynamics. J Mol Graph 14:33–8.
  • Hussain K, Ali I, Ullah S, et al. (2022). Enhanced antibacterial potential of naringin loaded β cyclodextrin nanoparticles. J Cluster Sci 33:339–48.
  • Imran M, Shah MR, Ullah F, et al. (2016). Glycoside-based niosomal nanocarrier for enhanced in-vivo performance of Cefixime. Int J Pharm 505:122–32.
  • Jiang G-B, Quan D, Liao K, Wang H. (2006). Novel polymer micelles prepared from chitosan grafted hydrophobic palmitoyl groups for drug delivery. Mol Pharm 3:152–60.
  • Jorgensen WL, Maxwell DS, Tirado-Rives J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–36.
  • Kazi KM, Mandal AS, Biswas N, et al. (2010). Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res 1:374–80.
  • Khan MI, Madni A, Ahmad S, et al. (2015). Formulation design and characterization of a non-ionic surfactant based vesicular system for the sustained delivery of a new chondroprotective agent. Braz J Pharm Sci 51:607–15.
  • Lemke A, Kiderlen AF, Petri B, Kayser O. (2010). Delivery of amphotericin B nanosuspensions to the brain and determination of activity against Balamuthia mandrillaris amebas. Nanomedicine 6:597–603.
  • Mady OY, Donia AM, Al-Madboly LA. (2018). Miconazole-urea in a buccal film as a new trend for treatment of resistant mouth fungal white patches. Front Microbiol 9:837.
  • Magaldi S, Mata-Essayag S, De Capriles CH, et al. (2004). Well diffusion for antifungal susceptibility testing. Int J Infect Dis 8:39–45.
  • Meng X-X, Russel WB. (2005). Structure and size of spherical micelles of telechelic polymers. Macromolecules 38:593–600.
  • Moussa W. (2017). Self-assembly of comb-like amphiphilic copolymers in aqueous solution. Polym Bull 74:1405–19.
  • Nasr M, Nawaz S, Elhissi A. (2012). Amphotericin B lipid nanoemulsion aerosols for targeting peripheral respiratory airways via nebulization. Int J Pharm 436:611–16.
  • Noor A, Preuss CV. (2022). Amphotericin B. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing.
  • Panyam J, Labhasetwar V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–47.
  • Peer D, Karp JM, Hong S, et al. (2007). Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–60.
  • Rasul A, Imran Khan M, Ur Rehman M, et al. (2020). In vitro characterization and release studies of combined nonionic surfactant-based vesicles for the prolonged delivery of an immunosuppressant model drug. Int J Nanomedicine 15:7937–49.
  • Reddy PD, Swarnalatha D. (2010). Recent advances in novel drug delivery systems. Int J PharmTech Res 2:2025–7.
  • Sagalowicz L, Leser ME. (2010). Delivery systems for liquid food products. Curr Opin Colloid Interface Sci 15:61–72.
  • Sahin NO. (2007). Niosomes as nanocarrier systems. In: Mozafari MR, ed. Nanomaterials and nanosystems for biomedical applications. Australasian Nanoscience and nanotechnology initiative, 67–81.
  • Sahoo SK, Labhasetwar V. (2003). Nanotech approaches to drug delivery and imaging. Drug Discov Today 8:1112–20.
  • Shah M, Murad W, Ur Rehman N, et al. (2021). GC-MS analysis and biomedical therapy of oil from n-hexane fraction of Scutellaria edelbergii Rech. f.: in vitro, in vivo, and in silico approach. Molecules 26:7676.
  • Smit B, Hilbers P, Esselink K, et al. (1991). Structure of a water/oil interface in the presence of micelles: a computer simulation study. J Phys Chem 95:6361–8.
  • Tagde P, Najda A, Nagpal K, et al. (2022). Nanomedicine-based delivery strategies for breast cancer treatment and management. Int J Mol Sci 23:2856.
  • Torchilin VP. (2001). Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73:137–72.
  • Uchegbu IF, Vyas SP. (1998). Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 172:33–70.
  • Ullah I, Shah A, Badshah A, et al. (2015). Surface, aggregation properties and antimicrobial activity of four novel thiourea-based non-ionic surfactants. Colloids Surf A 464:104–9.
  • Ulrich AS. (2002). Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep 22:129–50.
  • Van de Ven H, Paulussen C, Feijens P, et al. (2012). PLGA nanoparticles and nanosuspensions with amphotericin B: potent in vitro and in vivo alternatives to Fungizone and AmBisome. J Control Release 161:795–803.
  • Varun T, Sonia A, Bharat P, Patil V. (2012). Niosomes and liposomes-vesicular approach towards transdermal drug delivery. Int J Pharm Chem Sci 1:632–44.
  • Wagh VD, Deshmukh OJ. (2010). Niosomes as ophthalmic drug delivery systems: a review. J Pharm Res 3:1558–63.
  • Wang X-Q, Zhang Q. (2012). pH-sensitive polymeric nanoparticles to improve oral bioavailability of peptide/protein drugs and poorly water-soluble drugs. Eur J Pharm Biopharm 82:219–29.