4,329
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Recent progress in nanotechnology-based drug carriers for resveratrol delivery

, , &
Article: 2174206 | Received 23 Nov 2022, Accepted 24 Jan 2023, Published online: 28 Feb 2023

References

  • Abri Aghdam M, Bagheri R, Mosafer J, et al. (2019). Recent advances on thermosensitive and ph-sensitive liposomes employed in controlled release. J Control Release 315:1–15.
  • Abu Lila AS, Ishida T. (2017). Liposomal delivery systems: design optimization and current applications. Biol Pharm Bull 40:1–10.
  • Ahmed T, Javed S, Javed S, et al. (2017). Resveratrol and Alzheimer’s disease: mechanistic insights. Mol Neurobiol 54:2622–35.
  • Akintelu SA, Yao B, Folorunso AS. (2021). Bioremediation and pharmacological applications of gold nanoparticles synthesized from plant materials. Heliyon 7:e06591.
  • Alam T, Pandit J, Vohora D, et al. (2015). Optimization of nanostructured lipid carriers of lamotrigine for brain delivery: in vitro characterization and in vivo efficacy in epilepsy. Expert Opin Drug Deliv 12:181–94.
  • Alhusaini AM, Fadda LM, Alanazi AM, et al. (2022). Nano-resveratrol: a promising candidate for the treatment of renal toxicity induced by doxorubicin in rats through modulation of beclin-1 and mtor. Front Pharmacol 13:826908.
  • Amina SJ, Guo B. (2020). A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int J Nanomed 15:9823–57.
  • Ancic D, Orsolic N, Odeh D, et al. (2022). Resveratrol and its nanocrystals: a promising approach for cancer therapy? Toxicol Appl Pharmacol 435:115851.
  • Argenziano M, Ansari IA, Muntoni E, et al. (2022). Lipid-coated nanocrystals as a tool for improving the antioxidant activity of resveratrol. Antioxidants 11:1007.
  • Astley C, Houacine C, Zaabalawi A, et al. (2021). Nanostructured lipid carriers deliver resveratrol, restoring attenuated dilation in small coronary arteries, via the ampk pathway. Biomedicines 9:1852.
  • Bharadwaj KK, Rabha B, Pati S, et al. (2021). Green synthesis of gold nanoparticles using plant extracts as beneficial prospect for cancer theranostics. Molecules 26:6389.
  • Bhullar KS, Hubbard BP. (2015). Lifespan and healthspan extension by resveratrol. Biochim Biophys Acta 1852:1209–18.
  • Boas U, Heegaard PM. (2004). Dendrimers in drug research. Chem Soc Rev 33:43–63.
  • Bonferoni MC, Rossi S, Sandri G, et al. (2019). Nanoemulsions for "nose-to-brain" drug delivery. Pharmaceutics 11:84.
  • Bu LL, Rao L, Yu GT, et al. (2019). Cancer stem cell-platelet hybrid membrane-coated magnetic nanoparticles for enhanced photothermal therapy of head and neck squamous cell carcinoma. Adv Funct Mater 29:1807733.
  • Caddeo C, Pucci L, Gabriele M, et al. (2018). Stability, biocompatibility and antioxidant activity of peg-modified liposomes containing resveratrol. Int J Pharm 538:40–7.
  • Calabrese E, Mattson M, Calabrese V. (2010). Dose response biology: the case of resveratrol. Hum Exp Toxicol 29:1034–7.
  • Calabrese EJ, Mattson MP, Calabrese V. (2010). Resveratrol commonly displays hormesis: occurrence and biomedical significance. Hum Exp Toxicol 29:980–1015.
  • Chaudhari SP, Patil JR. (2014). Study of block copolymer micelles as vehicles for hydrophobic drug lamotrigine. IJPER 48:55–66.
  • Chen CC, Tsai TH, Huang ZR, Fang JY. (2010). Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: physicochemical characterization and pharmacokinetics. Eur J Pharm Biopharm 74:474–82.
  • Chen J, Jin J, Li K, et al. (2022). Progresses and prospects of neuroprotective agents-loaded nanoparticles and biomimetic material in ischemic stroke. Front Cell Neurosci 16:868323.
  • Chen Z, Zhao PF, Luo ZY, et al. (2016). Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. Acs Nano 10:10049–57.
  • Choradiya BR, Patil SB. (2021). A comprehensive review on nanoemulsion as an ophthalmic drug delivery system. J Mol Liq 339:116751.
  • Cottart CH, Nivet-Antoine V, Laguillier-Morizot C, Beaudeux JL. (2010). Resveratrol bioavailability and toxicity in humans. Mol Nutr Food Res 54:7–16.
  • Das S, Ng WK, Tan RB. (2012). Are nanostructured lipid carriers (nlcs) better than solid lipid nanoparticles (slns): development, characterizations and comparative evaluations of clotrimazole-loaded slns and nlcs? Eur J Pharm Sci 47:139–51.
  • de Oliveira MTP, de Sa Coutinho D, Tenorio de Souza E, et al. (2019). Orally delivered resveratrol-loaded lipid-core nanocapsules ameliorate lps-induced acute lung injury via the erk and pi3k/akt pathways. Int J Nanomedicine 14:5215–28.
  • Dupire J, Socol M, Viallat A. (2012). Full dynamics of a red blood cell in shear flow. Proc Natl Acad Sci USA 109:20808–13.
  • Fan Y, Li Y, Huang S, et al. (2020). Resveratrol-primed exosomes strongly promote the recovery of motor function in sci rats by activating autophagy and inhibiting apoptosis via the pi3k signaling pathway. Neurosci Lett 736:135262.
  • Fan Z, Jiang B, Zhu Q, et al. (2020). Tumor-specific endogenous fe(ii)-activated, mri-guided self-targeting gadolinium-coordinated theranostic nanoplatforms for amplification of ros and enhanced chemodynamic chemotherapy. ACS Appl Mater Interfaces 12:14884–904.
  • Fang ZX, Bhandari B. (2010). Encapsulation of polyphenols - a review. Trend Food Sci Technol 21:510–23.
  • Feng X, Chen YT, Li LY, et al. (2020). Preparation, evaluation and metabolites study in rats of novel isoginkgetin-loaded tpgs/soluplus mixed nanomicelles. J Food Drug Anal 28:309–21.
  • Fischer M, Vogtle F. (1999). Dendrimers: from design to application—A progress report. Angew Chem Int Ed 38:884–905. 10.1002/(SICI)1521-3773(19990401)38:7<884::AID-ANIE884>3.0.CO;2-K
  • Fontana F, Figueiredo P, Zhang P, et al. (2018). Production of pure drug nanocrystals and nano co-crystals by confinement methods. Adv Drug Deliv Rev 131:3–21.
  • Franco RS. (2012). Measurement of red cell lifespan and aging. Transfus Med Hemother 39:302–7.
  • Fu SY, Liang M, Wang YL, et al. (2019). Dual-modified novel biomimetic nanocarriers improve targeting and therapeutic efficacy in glioma. ACS Appl Mater Interfaces 11:1841–54.
  • Fuhrmann T, Ghosh M, Otero A, et al. (2015). Peptide-functionalized polymeric nanoparticles for active targeting of damaged tissue in animals with experimental autoimmune encephalomyelitis. Neurosci Lett 602:126–32.
  • Gal R, Deres L, Toth K, et al. (2021). The effect of resveratrol on the cardiovascular system from molecular mechanisms to clinical results. Int J Mol Sci 22:10152.
  • Garces A, Amaral MH, Lobo JMS, Silva AC. (2018). Formulations based on solid lipid nanoparticles (sln) and nanostructured lipid carriers (nlc) for cutaneous use: a review. Eur J Pharm Sci 112:159–67.
  • George A, Shah PA, Shrivastav PS. (2019). Natural biodegradable polymers based nano-formulations for drug delivery: a review. Int J Pharm 561:244–64.
  • Ghalandarlaki N, Alizadeh AM, Ashkani-Esfahani S. (2014). Nanotechnology-applied curcumin for different diseases therapy. Biomed Res Int 2014:1–23.
  • Gonzalez-Sarrias A, Iglesias-Aguirre CE, Cortes-Martin A, et al. (2022). Milk-derived exosomes as nanocarriers to deliver curcumin and resveratrol in breast tissue and enhance their anticancer activity. Int J Mol Sci 23:2860.
  • Grilc NK, Sova M, Kristl J. (2021). Drug delivery strategies for curcumin and other natural nrf2 modulators of oxidative stress-related diseases. Pharmaceutics 13:2137.
  • Guo L, Peng Y, Li Y, et al. (2015). Cell death pathway induced by resveratrol-bovine serum albumin nanoparticles in a human ovarian cell line. Oncol Lett 9:1359–63.
  • Guo LY, Peng Y, Yao JP, et al. (2010). Anticancer activity and molecular mechanism of resveratrol-bovine serum albumin nanoparticles on subcutaneously implanted human primary ovarian carcinoma cells in nude mice. Cancer Biother Radiopharm 25:471–7.
  • Gupta A, Eral HB, Hatton TA, Doyle PS. (2016). Nanoemulsions: formation, properties and applications. Soft Matter 12:2826–41.
  • Gutierrez Millan C, Colino Gandarillas CI, Sayalero Marinero ML, Lanao JM. (2012). Cell-based drug-delivery platforms. Ther Deliv 3:25–41.
  • Han Y, Chu XY, Cui L, et al. (2020). Neuronal mitochondria-targeted therapy for Alzheimer’s disease by systemic delivery of resveratrol using dual-modified novel biomimetic nanosystems. Drug Deliv 27:502–18.
  • Haney MJ, Klyachko NL, Zhaoa YL, et al. (2015). Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Controlled Release 207:18–30.
  • Hao JF, Gao Y, Zhao J, et al. (2015). Preparation and optimization of resveratrol nanosuspensions by antisolvent precipitation using box-behnken design. Aaps Pharmscitech 16:118–28.
  • Huang HC, Barua S, Sharma G, et al. (2011). Inorganic nanoparticles for cancer imaging and therapy. J Control Release 155:344–57.
  • Huang J, Huang N, Xu S, et al. (2021). Signaling mechanisms underlying inhibition of neuroinflammation by resveratrol in neurodegenerative diseases. J Nutr Biochem 88:108552.
  • Huang X, Mazza G. (2011). Simultaneous analysis of serotonin, melatonin, piceid and resveratrol in fruits using liquid chromatography tandem mass spectrometry. J Chromatogr A 1218:3890–9.
  • Iqbal H, Yang T, Li T, et al. (2021). Serum protein-based nanoparticles for cancer diagnosis and treatment. J Control Release 329:997–1022.
  • Iqubal MK, Iqubal A, Imtiyaz K, et al. (2021). Combinatorial lipid-nanosystem for dermal delivery of 5-fluorouracil and resveratrol against skin cancer: delineation of improved dermatokinetics and epidermal drug deposition enhancement analysis. Eur J Pharm Biopharm 163:223–39.
  • Jaiswal M, Dudhe R, Sharma PK. (2015). Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 5:123–7.
  • Jangid AK, Patel K, Jain P, et al. (2020). Inulin-pluronic-stearic acid based double folded nanomicelles for ph-responsive delivery of resveratrol. Carbohydr Polym 247:116730.
  • Jermain SV, Brough C, Williams RO. (2018). Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery - an update. Int J Pharm 535:379–92.
  • Jin M, Li S, Wu Y, et al. (2021). Construction of chitosan/alginate nano-drug delivery system for improving dextran sodium sulfate-induced colitis in mice. Nanomaterials (Basel 11:1884.
  • Kamel R, Abbas H, Shaffie NM. (2019). Development and evaluation of pla-coated co-micellar nanosystem of resveratrol for the intra-articular treatment of arthritis. Int J Pharm 569:118560.
  • Kang JH, Ko YT. (2019). Enhanced subcellular trafficking of resveratrol using mitochondriotropic liposomes in cancer cells. Pharmaceutics 11:423.
  • Kataoka K, Harada A, Nagasaki Y. (2001). Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–31.
  • Katila N, Duwa R, Bhurtel S, et al. (2022). Enhancement of blood-brain barrier penetration and the neuroprotective effect of resveratrol. J Control Release 346:1–19.
  • Khosa A, Reddi S, Saha RN. (2018). Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother 103:598–613.
  • Khusbu FY, Zhou X, Roy M, et al. (2020). Resveratrol induces depletion of traf6 and suppresses prostate cancer cell proliferation and migration. Int J Biochem Cell Biol 118:105644.
  • Kim J, Shim MK, Yang S, et al. (2021). Combination of cancer-specific prodrug nanoparticle with bcl-2 inhibitor to overcome acquired drug resistance. J Control Release 330:920–32.
  • Kotta S, Mubarak Aldawsari H, Badr-Eldin SM, et al. (2021). Coconut oil-based resveratrol nanoemulsion: optimization using response surface methodology, stability assessment and pharmacokinetic evaluation. Food Chem 357:129721.
  • Kup FO, Coskuncay S, Duman F. (2020). Biosynthesis of silver nanoparticles using leaf extract of aesculus hippocastanum (horse chestnut): evaluation of their antibacterial, antioxidant and drug release system activities. Mater Sci Eng C-Mater Biol Appl 107:110207.
  • Laginha K, Mumbengegwi D, Allen T. (2005). Liposomes targeted via two different antibodies: assay, b-cell binding and cytotoxicity. Biochim Biophys Acta 1711:25–32.
  • Langer R. (2000). Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res 33:94–101.
  • Le Clanche S, Cheminel T, Rannou F, et al. (2018). Use of resveratrol self-emulsifying systems in t/c28a2 cell line as beneficial effectors in cellular uptake and protection against oxidative stress-mediated death. Front Pharmacol 9:538.
  • Lee CC, MacKay JA, Frechet JM, Szoka FC. (2005). Designing dendrimers for biological applications. Nat Biotechnol 23:1517–26.
  • Lee DG, Lee M, Go EB, Chung N. (2022). Resveratrol-loaded gold nanoparticles enhance caspase-mediated apoptosis in panc-1 pancreatic cells via mitochondrial intrinsic apoptotic pathway. Cancer Nanotechnol 13:34.
  • Li A, Zhao Y, Li Y, et al. (2021). Cell-derived biomimetic nanocarriers for targeted cancer therapy: cell membranes and extracellular vesicles. Drug Deliv 28:1237–55.
  • Li C, Wang X, Li R, et al. (2019). Resveratrol-loaded plga nanoparticles functionalized with red blood cell membranes as a biomimetic delivery system for prolonged circulation time. J Drug Delivery Sci Technol 54:101369.
  • Li J, Wang Z, Zhang H, et al. (2021). Progress in the development of stabilization strategies for nanocrystal preparations. Drug Deliv 28:19–36.
  • Li M, Du C, Guo N, et al. (2019). Composition design and medical application of liposomes. Eur J Med Chem 164:640–53.
  • Li Z, Qiao W, Wang C, et al. (2020). Dppc-coated lipid nanoparticles as an inhalable carrier for accumulation of resveratrol in the pulmonary vasculature, a new strategy for pulmonary arterial hypertension treatment. Drug Deliv 27:736–44.
  • Lian B, Wu M, Feng Z, et al. (2019). Folate-conjugated human serum albumin-encapsulated resveratrol nanoparticles: preparation, characterization, bioavailability and targeting of liver tumors. Artif Cells Nanomed Biotechnol 47:154–65.
  • Liang MY, Guo MY, Saw PE, Yao YD. (2022). Fully natural lecithin encapsulated nano-resveratrol for anti-cancer therapy. Int J Nanomedicine 17:2069–78.
  • Lu Y, Lv Y, Li T. (2019). Hybrid drug nanocrystals. Adv Drug Deliv Rev 143:115–33.
  • Lu Y, Park K. (2013). Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm 453:198–214.
  • Lu Y, Park K. (2013). Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm 453:198–214.
  • Lu Y, Qi J, Dong X, et al. (2017). The in vivo fate of nanocrystals. Drug Discov Today 22:744–50.
  • Lu Y, Zhang ES, Yang JH, Cao ZQ. (2018). Strategies to improve micelle stability for drug delivery. Nano Res 11:4985–98.
  • Maherani B, Arab-Tehrany E, Mozafari MR, et al. (2011). Liposomes: a review of manufacturing techniques and targeting strategies. Curr Nanosci 7:436–52.
  • Majidinia M, Mirza-Aghazadeh-Attari M, Rahimi M, et al. (2020). Overcoming multidrug resistance in cancer: recent progress in nanotechnology and new horizons. IUBMB Life 72:855–71.
  • Masood F. (2016). Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl 60:569–78.
  • Menjoge AR, Kannan RM, Tomalia DA. (2010). Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15:171–85.
  • Miao L, Daozhou L, Ying C, et al. (2021). A resveratrol-loaded nanostructured lipid carrier hydrogel to enhance the anti-uv irradiation and anti-oxidant efficacy. Colloids Surf B Biointerfaces 204:111786.
  • Moradi SZ, Momtaz S, Bayrami Z, et al. (2020). Nanoformulations of herbal extracts in treatment of neurodegenerative disorders. Front Bioeng Biotechnol 8:238.
  • Munagala R, Aqil F, Jeyabalan J, Gupta RC. (2016). Bovine milk-derived exosomes for drug delivery. Cancer Lett 371:48–61.
  • Muzykantov VR. (2010). Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin Drug Deliv 7:403–27.
  • Nam N. (2006). Naturally occurring nf-kappab inhibitors. Mini Rev Med Chem 6:945–51.
  • Naserifar M, Hosseinzadeh H, Abnous K, et al. (2020). Oral delivery of folate-targeted resveratrol-loaded nanoparticles for inflammatory bowel disease therapy in rats. Life Sci 262:118555.
  • Nassir AM, Shahzad N, Ibrahim IAA, et al. (2018). Resveratrol-loaded plga nanoparticles mediated programmed cell death in prostate cancer cells. Saudi Pharm J 26:876–85.
  • Nunes S, Danesi F, Del Rio D, Silva P. (2018). Resveratrol and inflammatory bowel disease: the evidence so far. Nutr Res Rev 31:85–97.
  • Pearce AK, O’Reilly RK. (2019). Insights into active targeting of nanoparticles in drug delivery: advances in clinical studies and design considerations for cancer nanomedicine. Bioconjug Chem 30:2300–11.
  • Poonia N, Kaur Narang J, Lather V, et al. (2019). Resveratrol loaded functionalized nanostructured lipid carriers for breast cancer targeting: systematic development, characterization and pharmacokinetic evaluation. Colloids Surf B Biointerfaces 181:756–66.
  • Poonia N, Lather V, Narang JK, et al. (2020). Resveratrol-loaded folate targeted lipoprotein-mimetic nanoparticles with improved cytotoxicity, antioxidant activity and pharmacokinetic profile. Mater Sci Eng C-Mater Biol Appl 114:111016.
  • Prysyazhna O, Wolhuter K, Switzer C, et al. (2019). Blood pressure-lowering by the antioxidant resveratrol is counterintuitively mediated by oxidation of cgmp-dependent protein kinase. Circulation 140:126–37.
  • Qiu Y, Ren K, Zhao W, et al. (2021). A "dual-guide" bioinspired drug delivery strategy of a macrophage-based carrier against postoperative triple-negative breast cancer recurrence. J Control Release 329:191–204.
  • Rahman M, Almalki WH, Afzal O, et al. (2020). Cationic solid lipid nanoparticles of resveratrol for hepatocellular carcinoma treatment: systematic optimization, in vitro characterization and preclinical investigation. Int J Nanomedicine 15:9283–99.
  • Reinhold SE, Schwendeman SP. (2013). Effect of polymer porosity on aqueous self-healing encapsulation of proteins in plga microspheres. Macromol Biosci 13:1700–10.
  • Rezaei A, Fathi M, Jafari SM. (2019). Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids 88:146–62.
  • Rinaldi F, Maurizi L, Forte J, et al. (2021). Resveratrol-loaded nanoemulsions: in vitro activity on human t24 bladder cancer cells. Nanomaterials (Basel) 11:1569.
  • Rocha S, Lucas M, Ribeiro D, et al. (2021). Nano-based drug delivery systems used as vehicles to enhance polyphenols therapeutic effect for diabetes mellitus treatment. Pharmacol Res 169:105604.
  • Roy H, Nayak BS, Abdul Rahaman S. (2019). Characterization and biology of nanomaterials for drug delivery. Amsterdam, Netherlands: Elsevier Science, 445–75.
  • Sale S, Verschoyle RD, Boocock D, et al. (2004). Pharmacokinetics in mice and growth-inhibitory properties of the putative cancer chemopreventive agent resveratrol and the synthetic analogue trans 3,4,5,4’-tetramethoxystilbene. Br J Cancer 90:736–44.
  • Santos AC, Costa G, Veiga F, et al. (2014). Advance in methods studying the pharmacokinetics of polyphenols. Curr Drug Metab 15:96–115.
  • Sawant RR, Torchilin VP. (2010). Multifunctionality of lipid-core micelles for drug delivery and tumour targeting. Mol Membr Biol 27:232–46.
  • Shahnaz G, Edagwa BJ, McMillan J, et al. (2017). Development of mannose-anchored thiolated amphotericin b nanocarriers for treatment of visceral leishmaniasis. Nanomedicine (Lond) 12:99–115.
  • Shi J, Zhang Y, Zhang X, et al. (2021). Remodeling immune microenvironment in periodontitis using resveratrol liposomes as an antibiotic-free therapeutic strategy. J Nanobiotechnol 19:429.
  • Shi Y, Ye F, Lu K, et al. (2020). Characterizations and bioavailability of dendrimer-like glucan nanoparticulate system containing resveratrol. J Agric Food Chem 68:6420–9.
  • Singh G, Pai RS. (2014). Optimized plga nanoparticle platform for orally dosed trans-resveratrol with enhanced bioavailability potential. Expert Opin Drug Deliv 11:647–59.
  • Singh SK, Makadia V, Sharma S, et al. (2017). Preparation and in-vitro/in-vivo characterization of trans-resveratrol nanocrystals for oral administration. Drug Deliv Transl Res 7:395–407.
  • Siu FY, Ye S, Lin H, Li S. (2018). Galactosylated plga nanoparticles for the oral delivery of resveratrol: enhanced bioavailability and in vitro anti-inflammatory activity. Int J Nanomedicine 13:4133–44.
  • Soleas GJ, Angelini M, Grass L, et al. (2001). Absorption of trans-resveratrol in rats. Methods Enzymol 335:145–54.
  • Sperling RA, Parak WJ. (2010). Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans A Math Phys Eng Sci 368:1333–83.
  • Srivani G, Behera SK, Dariya B, et al. (2020). Resveratrol binds and inhibits transcription factor hif-1alpha in pancreatic cancer. Exp Cell Res 394:112126.
  • Summerlin N, Qu Z, Pujara N, et al. (2016). Colloidal mesoporous silica nanoparticles enhance the biological activity of resveratrol. Colloids Surf B Biointerfaces 144:1–7.
  • Summerlin N, Soo E, Thakur S, et al. (2015). Resveratrol nanoformulations: challenges and opportunities. Int J Pharm 479:282–90.
  • Sun L, Hu Y, Mishra A, et al. (2020). Protective role of poly(lactic-co-glycolic) acid nanoparticle loaded with resveratrol against isoproterenol-induced myocardial infarction. Biofactors 46:421–31.
  • Svenson S. (2009). Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 71:445–62.
  • Tapeinos C, Battaglini M, Ciofani G. (2017). Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 264:306–32.
  • Thipe VC, Amiri KP, Bloebaum P, et al. (2019). Development of resveratrol-conjugated gold nanoparticles: interrelationship of increased resveratrol corona on anti-tumor efficacy against breast, pancreatic and prostate cancers. Int J Nanomed 14:4413–28.
  • Tome-Carneiro J, Larrosa M, Gonzalez-Sarrias A, et al. (2013). Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr Pharm Des 19:6064–93.
  • Torchilin VP. (2005). Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–60.
  • Tsujioka T, Sasaki D, Takeda A, et al. (2022). Resveratrol-encapsulated mitochondria-targeting liposome enhances mitochondrial respiratory capacity in myocardial cells. Int J Mol Sci 23:112.
  • Vargas JE, Puga R, Lenz G, et al. (2020). Cellular mechanisms triggered by the cotreatment of resveratrol and doxorubicin in breast cancer: a translational in vitro-in silico model. Oxid Med Cell Longev 2020:5432651.
  • Vestergaard M, Ingmer H. (2019). Antibacterial and antifungal properties of resveratrol. Int J Antimicrob Agents 53:716–23.
  • Vijayakumar MR, Vajanthri KY, Balavigneswaran CK, et al. (2016). Pharmacokinetics, biodistribution, in vitro cytotoxicity and biocompatibility of vitamin e tpgs coated trans resveratrol liposomes. Colloids Surf B Biointerfaces 145:479–91.
  • Walle T, Hsieh F, DeLegge MH, et al. (2004). High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32:1377–82.
  • Wang H, Sui H, Zheng Y, et al. (2019). Curcumin-primed exosomes potently ameliorate cognitive function in ad mice by inhibiting hyperphosphorylation of the tau protein through the akt/gsk-3beta pathway. Nanoscale 11:7481–96.
  • Wang M, Liu Y, Zhang X, et al. (2017). Gold nanoshell coated thermo-ph dual responsive liposomes for resveratrol delivery and chemo-photothermal synergistic cancer therapy. J Mater Chem B 5:2161–71.
  • Wang W, Zhou M, Xu Y, et al. (2021). Resveratrol-loaded tpgs-resveratrol-solid lipid nanoparticles for multidrug-resistant therapy of breast cancer: in vivo and in vitro study. Front Bioeng Biotechnol 9:762489.
  • Wang X, Parvathaneni V, Shukla SK, et al. (2020). Inhalable resveratrol-cyclodextrin complex loaded biodegradable nanoparticles for enhanced efficacy against non-small cell lung cancer. Int J Biol Macromol 164:638–50.
  • Wang X, Zhao X, Zhong Y, et al. (2022). Biomimetic exosomes: a new generation of drug delivery system. Front Bioeng Biotechnol 10:865682.
  • Wu M, Zhong C, Deng Y, et al. (2020). Resveratrol loaded glycyrrhizic acid-conjugated human serum albumin nanoparticles for tail vein injection ii: pharmacokinetics, tissue distribution and bioavailability. Drug Deliv 27:81–90.
  • Xiong S, Liu W, Zhou Y, et al. (2020). Enhancement of oral bioavailability and anti-parkinsonian efficacy of resveratrol through a nanocrystal formulation. Asian J Pharm Sci 15:518–28.
  • Xu H, Jia F, Singh PK, et al. (2017). Synergistic anti-glioma effect of a coloaded nano-drug delivery system. Int J Nanomedicine 12:29–40.
  • Xu XY, Sun LP, Zhou L, et al. (2020). Functional chitosan oligosaccharide nanomicelles for topical ocular drug delivery of dexamethasone. Carbohydr Polym 227:115356.
  • Yan W, Jiang S. (2020). Immune cell-derived exosomes in the cancer-immunity cycle. Trends Cancer 6:506–17.
  • Yang GB, Phua SZF, Bindra AK, Zhao YL. (2019). Degradability and clearance of inorganic nanoparticles for biomedical applications. Adv Mater 31:1805730.
  • Yang H. (2010). Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis. Pharm Res 27:1759–71.
  • Yee YJ, Benson HAE, Dass CR, Chen Y. (2022). Evaluation of novel conjugated resveratrol polymeric nanoparticles in reduction of plasma degradation, hepatic metabolism and its augmentation of anticancer activity in vitro and in vivo. Int J Pharm 615:121499.
  • Yin T, Diao Z, Blum NT, et al. (2022). Engineering bacteria and bionic bacterial derivatives with nanoparticles for cancer therapy. Small 18:e2104643.
  • Yousef M, Vlachogiannis IA, Tsiani E. (2017). Effects of resveratrol against lung cancer: in vitro and in vivo studies. Nutrients 9:1231.
  • Yu C, Shin YG, Chow A, et al. (2002). Human, rat, and mouse metabolism of resveratrol. Pharmaceutical Research 19:1907–14.
  • Yuan L, Zhou M, Huang D, et al. (2019). Resveratrol inhibits the invasion and metastasis of colon cancer through reversal of epithelial mesenchymal transition via the akt/gsk3beta/snail signaling pathway. Mol Med Rep 20:2783–95.
  • Zhang L, Zhu K, Zeng H, et al. (2019). Resveratrol solid lipid nanoparticles to trigger credible inhibition of doxorubicin cardiotoxicity. Int J Nanomedicine 14:6061–71.
  • Zhang W, Mehta A, Tong Z, et al. (2021). Development of polymeric nanoparticles for blood-brain barrier transfer-strategies and challenges. Adv Sci (Weinh) 8:2003937.
  • Zhang XW, Chen GJ, Zhang TP, et al. (2014). Effects of pegylated lipid nanoparticles on the oral absorption of one bcs ii drug: a mechanistic investigation. Int J Nanomed 9:5503–14.
  • Zhao F, Qin J, Liang Y, Zhou R. (2021). Exploring anti-liver cancer targets and mechanisms of oxyresveratrol: in silico and verified findings. Bioengineered 12:9939–48.
  • Zhao YN, Cao YN, Sun J, et al. (2020). Anti-breast cancer activity of resveratrol encapsulated in liposomes. J Mater Chem B 8:27–37.
  • Zhu XY, Wu CH, Qiu SH, et al. (2017). Effects of resveratrol on glucose control and insulin sensitivity in subjects with type 2 diabetes: systematic review and meta-analysis. Nutr Metab 14:60.
  • Zu M, Ma Y, Cannup B, et al. (2021). Oral delivery of natural active small molecules by polymeric nanoparticles for the treatment of inflammatory bowel diseases. Adv Drug Deliv Rev 176:113887.
  • Zu Y, Overby H, Ren G, et al. (2018). Resveratrol liposomes and lipid nanocarriers: comparison of characteristics and inducing browning of white adipocytes. Colloids Surf B Biointerfaces 164:414–23.