2,390
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Andrographolide nanophytosomes exhibit enhanced cellular delivery and pro-apoptotic activities in HepG2 liver cancer cells

, , , , , , , , , & ORCID Icon show all
Article: 2174209 | Received 31 Oct 2022, Accepted 24 Jan 2023, Published online: 10 Feb 2023

References

  • Abou-Alfa GK, Meyer T, Cheng A-L, et al. (2018). Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med 379:1–15.
  • Akowuah GA, Zhari I, Norhayati I, Mariam A. (2006). HPLC and HPTLC densitometric determination of andrographolides and antioxidant potential of Andrographis paniculata. J Food Compos Anal 19:118–26.
  • Aldawsari HM, Badr-Eldin SM. (2020). Enhanced pharmacokinetic performance of dapoxetine hydrochloride via the formulation of instantly-dissolving buccal films with acidic pH modifier and hydrophilic cyclodextrin: factorial analysis, in vitro and in vivo assessment. J Adv Res 24:281–90.
  • Alhakamy NA, Fahmy U, Badr-Eldin SM, et al. (2020). Optimized icariin phytosomes exhibit enhanced cytotoxicity and apoptosis-inducing activities in ovarian cancer cells. Pharmaceutics 12:346.
  • Alhakamy NA, Badr-Eldin SM, A Fahmy U, et al. (2020). Thymoquinone-loaded soy-phospholipid-based phytosomes exhibit anticancer potential against human lung cancer cells. Pharmaceutics 12:761.
  • Alhakamy NA, Fahmy UA, Eldin SMB, et al. (2021). Scorpion venom-functionalized quercetin phytosomes for breast cancer management: in vitro response surface optimization and anticancer activity against MCF-7 cells. Polymers (Basel) 14:93.
  • Alhakamy NA, Fahmy UA. (2022). Exploring cytotoxicity of cordycepin loaded nanovesicles against (HCT116) colon cancer cells: optimization and cellular evaluation. Biomed Pharmacother 154:113619.
  • Alhakamy NA, Okbazghi SZ, A, Alfaleh M, et al. (2022). Wasp venom peptide improves the proapoptotic activity of alendronate sodium in A549 lung cancer cells. PLoS One 17:e0264093.
  • Alharbi WS, Almughem FA, Almehmady AM, et al. (2021). Phytosomes as an emerging nanotechnology platform for the topical delivery of bioactive phytochemicals. Pharmaceutics 13:1475.
  • Al-Mahallawi AM, Abdelbary AA, Aburahma MH. (2015). Investigating the potential of employing bilosomes as a novel vesicular carrier for transdermal delivery of tenoxicam. Int J Pharm 485:329–40.
  • Al-Rabia MW, Alhakamy NA, Rizg WY, et al. (2022). Boosting curcumin activity against human prostatic cancer PC3 cells by utilizing scorpion venom conjugated phytosomes as promising functionalized nanovesicles. Drug Deliv 29:807–20.
  • Awasthi R, Kulkarni GT, Pawar VK. (2011). Phytosomes: an approach to increase the bioavailability of plant extracts. Int J Pharm Pharm Sci 3:1–3.
  • Badr-Eldin SM, Aldawsari HM, Ahmed OAA, et al. (2021). Optimized semisolid self-nanoemulsifying system based on glyceryl behenate: a potential nanoplatform for enhancing antitumor activity of raloxifene hydrochloride in MCF-7 human breast cancer cells. Int J Pharm 600:120493.
  • Banerjee M, Chattopadhyay S, Choudhuri T, et al. (2016). Cytotoxicity and cell cycle arrest induced by andrographolide lead to programmed cell death of MDA-MB-231 breast cancer cell line. J Biomed Sci 23:1–17.
  • Bhattacharya S. (2009). Phytosomes: the new technology for enhancement of bioavailability of botanicals and nutraceuticals. Int J Health Res 2:225–32.
  • Chao H-P, Kuo C-D, Chiu J-H, Fu S-L. (2010). Andrographolide exhibits anti-invasive activity against colon cancer cells via inhibition of MMP2 activity. Planta Med 76:1827–33.
  • Chao W-W, Lin B-F. (2010). Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chin Med 5:17–25.
  • Chen J, Jin R, Zhao J, et al. (2015). Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma. Cancer Lett 367:1–11.
  • Chen W, Feng L, Nie H, Zheng X. (2012). Andrographolide induces autophagic cell death in human liver cancer cells through cyclophilin D-mediated mitochondrial permeability transition pore. Carcinogenesis 33:2190–8.
  • Chen X, Fan X, Li F. (2022). Development and evaluation of a novel diammonium glycyrrhizinate phytosome for nasal vaccination. Pharmaceutics 14:2000.
  • Cheung MTW, Ramalingam R, Lau KKK, et al. (2012). Cell type-dependent effects of andrographolide on human cancer cell lines. Life Sci 91:751–60.
  • Choudhari AS, Mandave PC, Deshpande M, et al. (2020). Phytochemicals in cancer treatment: from preclinical studies to clinical practice. Front Pharmacol 10:1614.
  • Chowdhury KD, Sarkar A, Chatterjee S, et al. (2019). Cathepsin B mediated scramblase activation triggers cytotoxicity and cell cycle arrest by andrographolide to overcome cellular resistance in cisplatin resistant human hepatocellular carcinoma HepG2 cells. Environ Toxicol Pharmacol 68:120–32.
  • Conner SD, Schmid SL. (2003). Regulated portals of entry into the cell. Nature 422:37–44.
  • Crompton M. (1999). The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–49.
  • Cucarull B, Tutusaus A, Rider P, et al. (2022). Hepatocellular carcinoma: molecular pathogenesis and therapeutic advances. Cancers (Basel) 14:621.
  • Du Q, Jerz G, Winterhalter P. (2003). Separation of andrographolide and neoandrographolide from the leaves of Andrographis paniculata using high-speed counter-current chromatography. J Chromatogr A 984:147–51.
  • Essa EA. (2010). Effect of formulation and processing variables on the particle size of sorbitan monopalmitate niosomes. Asian J Pharm 4:227.
  • Fahmy UA, Aldawsari HM, Badr-Eldin SM, et al. (2020). The encapsulation of febuxostat into emulsomes strongly enhances the cytotoxic potential of the drug on HCT 116 colon cancer cells. Pharmaceutics 12:956.
  • Fahmy UA, Badr-Eldin SM, Ahmed OAA, et al. (2020). Intranasal niosomal in situ gel as a promising approach for enhancing flibanserin bioavailability and brain delivery: In vitro optimization and ex vivo/in vivo evaluation. Pharmaceutics 12:485.
  • Freag MS, Elnaggar YSR, Abdallah OY. (2013). Lyophilized phytosomal nanocarriers as platforms for enhanced diosmin delivery: optimization and ex vivo permeation. Int J Nanomed 8:2385–97.
  • Ghanbarzadeh B, Babazadeh A, Hamishehkar H. (2016). Nano-phytosome as a potential food-grade delivery system. Food Biosci 15:126–35.
  • Harbi I, Aljaeid B, El-Say KM, Zidan AS. (2016). Glycosylated sertraline-loaded liposomes for brain targeting: qbD study of formulation variabilities and brain transport. AAPS PharmSciTech 17:1404–20.
  • Harjotaruno S, Widyawaruyanti A, Sismindari S, Zaini NC. (2007). Apoptosis inducing effect of andrographolide on TF-47 human breast cancer cell line. Afr J Tradit Complement Altern Med 4:345–51.
  • Hou Z, Li Y, Huang Y, et al. (2013). Phytosomes loaded with mitomycin C–soybean phosphatidylcholine complex developed for drug delivery. Mol Pharm 10:90–101.
  • Iavarone M, Cabibbo G, Piscaglia F, et al. (2011). Field-practice study of sorafenib therapy for hepatocellular carcinoma: a prospective multicenter study in Italy. Hepatology 54:2055–63.
  • Joseph SM, Joseph JT. (2016). Bicyclic diterpenoid and phytosterol constituents from Andrographis paniculata (NEES). Orient J Chem 32:2231–33.
  • Khan J, Alexander A, Saraf S, et al. (2013). Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. J Control Release 168:50–60.
  • Kidd P, Head K. (2005). A review of the bioavailability and clinical efficacy of milk thistle phytosome: a silybin-phosphatidylcholine complex (Siliphos). Altern Med Rev 10:193–03.
  • Kidd PM. (2009). Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts. Altern Med Rev 14:226–46.
  • Kim J-Y, Park J-H. (2003). ROS-dependent caspase-9 activation in hypoxic cell death. FEBS Lett 549:94–8.
  • Kudo M, Finn RS, Qin S, et al. (2018). Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 391:1163–73.
  • Kumar RA, Sridevi K, Kumar NV, et al. (2004). Anticancer and immunostimulatory compounds from Andrographis paniculata. J Ethnopharmacol 92:291–5.
  • Lee SY, Abdullah LC, Rahman RA, et al. (2019). Role of polymers as crystal growth inhibitors in coprecipitation via solution-enhanced dispersion by supercritical fluids (SEDS) to improve andrographolide dissolution from standardized Andrographis paniculata extract. J Drug Deliv Sci Technol 50:145–54.
  • Lei M, Ma G, Sha S, et al. (2019). Dual-functionalized liposome by co-delivery of paclitaxel with sorafenib for synergistic antitumor efficacy and reversion of multidrug resistance. Drug Deliv 26:262–72.
  • Lemasters JJ. (1999). Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol 276:G1–G6.
  • Levita J. (2014). Bioavailability study of Sambiloto (Andrographis paniculata) herbs infusion in rabbit. Indonesian J Pharm 25:138.
  • Lezaja A, Altmeyer M. (2018). Inherited DNA lesions determine G1 duration in the next cell cycle. Cell Cycle 17:24–32.
  • Li J, Cheung H-Y, Zhang Z, et al. (2007). Andrographolide induces cell cycle arrest at G2/M phase and cell death in HepG2 cells via alteration of reactive oxygen species. Eur J Pharmacol 568:31–44.
  • Li Y, Zhang P, Qiu F, et al. (2012). Inactivation of PI3K/Akt signaling mediates proliferation inhibition and G2/M phase arrest induced by andrographolide in human glioblastoma cells. Life Sci 90:962–7.
  • Lim S, Jeon HJ, Kee KH, et al. (2017). Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells. Oncol Lett 13:3837–44.
  • Liu G, Chu H. (2018). Andrographolide inhibits proliferation and induces cell cycle arrest and apoptosis in human melanoma cells. Oncol Lett 15:5301–5.
  • Liu Z, Wu X, Dai K, et al. (2022). The new andrographolide derivative AGS-30 induces apoptosis in human colon cancer cells by activating a ROS-dependent JNK signalling pathway. Phytomedicine 94:153824.
  • Llovet JM, Ricci S, Mazzaferro V, et al. (2008). Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–90.
  • Lu M, Qiu Q, Luo X, et al. (2019). Phyto-phospholipid complexes (phytosomes): a novel strategy to improve the bioavailability of active constituents. Asian J Pharm Sci 14:265–74.
  • Ly JD, Grubb DR, Lawen A. (2003). The mitochondrial membrane potential (Δψm) in apoptosis; an update. Apoptosis 8:115–28.
  • Malik Z, Parveen R, Parveen B, et al. (2021). Anticancer potential of andrographolide from Andrographis paniculata (Burm. f.) Nees and its mechanisms of action. J Ethnopharmacol 272:113936.
  • Mazumder A, Dwivedi A, du Preez JL, du Plessis J. (2016). In vitro wound healing and cytotoxic effects of sinigrin–phytosome complex. Int J Pharm 498:283–93.
  • Ooi JP, Kuroyanagi M, Sulaiman SF, et al. (2011). Andrographolide and 14-deoxy-11, 12-didehydroandrographolide inhibit cytochrome P450s in HepG2 hepatoma cells. Life Sci 88:447–54.
  • Pfeffer CM, Singh ATK. (2018). Apoptosis: a target for anticancer therapy. Int J Mol Sci 19:448.
  • Qi S-S, Sun J-H, Yu H-H, Yu S-Q. (2017). Co-delivery nanoparticles of anti-cancer drugs for improving chemotherapy efficacy. Drug Deliv 24:1909–26.
  • Rajagopal S, Kumar RA, Deevi DS, et al. (2003). Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata. J Exp Ther Oncol 3:147–58.
  • Satyanarayana C, Deevi DS, Rajagopalan R, et al. (2004). DRF 3188 a novel semi-synthetic analog of andrographolide: cellular response to MCF 7 breast cancer cells. BMC Cancer 4:26–8.
  • Shakeri A, Sahebkar A. (2016). Phytosome: a fatty solution for efficient formulation of phytopharmaceuticals. Recent Pat Drug Deliv Formul 10:7–10.
  • Sharma S, Shukla P, Misra A, Mishra PR. 2014. Interfacial and colloidal properties of emulsified systems: pharmaceutical and biological perspective. In: Ohshima H, Makino K, eds. Colloid and interface science in pharmaceutical research and development. Amsterdam, The Netherlands: Elsevier, 149–72.
  • Singh B, Bhatowa R, Tripathi CB, Kapil R. (2011). Developing micro-/nanoparticulate drug delivery systems using “design of experiments”. Int J Pharm Investig 1:75–87.
  • Song Z, Yin J, Xiao P, et al. (2021). Improving breviscapine oral bioavailability by preparing nanosuspensions, liposomes and phospholipid complexes. Pharmaceutics 13:132.
  • Sung H, Ferlay J, Siegel RL, et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–49.
  • Suo X, Zhang H, Wang Y. (2007). HPLC determination of andrographolide in rat whole blood: study on the pharmacokinetics of andrographolide incorporated in liposomes and tablets. Biomed Chromatogr 21:730–4.
  • Syukri Y, Martien R, Lukitaningsih E, Nugroho AE. (2018). Quantification of andrographolide isolated from Andrographis paniculata Nees obtained from traditional market in Yogyakarta using validated HPLC. Indones J Chem 16:190–7.
  • Tu YS, Sun DM, Zhang JJ, et al. (2014). Preparation and characterisation of andrographolide niosomes and its anti-hepatocellular carcinoma activity. J Microencapsul 31:307–16.
  • Wang K, Sun D. (2018). Cancer stem cells of hepatocellular carcinoma. Oncotarget 9:23306–14.
  • Wang S, Li H, Chen S, et al. (2020). Andrographolide induces apoptosis in human osteosarcoma cells via the ROS/JNK pathway. Int J Oncol 56:1417–28.
  • Wong RSY. (2011). Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:1–14.
  • Yan Y, Chen N, Wang Y, Wang K. (2016). The application of antitumor drug-targeting models on liver cancer. Drug Deliv 23:1667–75.
  • Yang J, Liu X, Bhalla K, et al. (1997). Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–32.
  • Yen C-C, Liang Y-K, Cheng C-P, et al. (2020). Oral bioavailability enhancement and anti-fatigue assessment of the andrographolide loaded solid dispersion. Int J Mol Sci 21:2506.
  • Yingchoncharoen P, Kalinowski DS, Richardson DR. (2016). Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev 68:701–87.
  • Zan Y, Dai Z, Liang L, et al. (2019). Co-delivery of plantamajoside and sorafenib by a multi-functional nanoparticle to combat the drug resistance of hepatocellular carcinoma through reprograming the tumor hypoxic microenvironment. Drug Deliv 26:1080–91.
  • Zhang Y, Lin R, Li H, et al. (2019). Strategies to improve tumor penetration of nanomedicines through nanoparticle design. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11:e1519.
  • Zhu Y, Zheng B, Wang H, Chen L. (2017). New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin 38:614–22.