2,198
Views
1
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

SREKA-targeted liposomes for highly metastatic breast cancer therapy

, , , , , , , , , & show all
Article: 2174210 | Received 21 Oct 2022, Accepted 24 Jan 2023, Published online: 08 Feb 2023

References

  • Allen TM, Cullis PR. (2013). Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:1–16.
  • Allen TM, Hansen CB, Guo LSS. (1993). Subcutaneous administration of liposomes: a comparison with the intravenous and intraperitoneal routes of injection. BBA Biomembr 1150:9–16.
  • Aronson MR, Medina SH, Mitchell MJ. (2021). Peptide functionalized liposomes for receptor targeted cancer therapy. APL Bioeng 5:1011501(1–11).
  • Barenholz Y. (2012). Doxil® – the first FDA-approved nano-drug: Lessons learned. J Control Release 160:117–34.
  • Blume G, Cevc G. (1990). Liposomes for the sustained drug release in vivo. BBA Biomembr 1029:91–7.
  • Brissett AE, Hom DB. (2003). The effects of tissue sealants, platelet gels, and growth factors on wound healing. Curr Opin Otolaryngol Head Neck Surg 11:245–50.
  • Chung EJ, Cheng Y, Morshed R, et al. (2014). Fibrin-binding, peptide amphiphile micelles for targeting glioblastoma. Biomaterials 35:1249–56.
  • de Jesús Ruíz-Baltazar Á, Reyes-López SY, Larrañaga D, et al. (2017). Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties. Results Phys 7:2639–43.
  • Dicko A, Kwak S, Frazier AA, et al. (2010). Biophysical characterization of a liposomal formulation of cytarabine and daunorubicin. Int J Pharm 391:248–59.
  • Forssen EA, Malé-Brune R, Adler-Moore JP, et al. (1996). fluorescence imaging studies for the disposition of daunorubicin liposomes (DaunoXome) within tumor tissue. Cancer Res 56:2066–75.
  • Haran G, Cohen R, Bar LK, Barenholz Y. (1993). Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. BBA Biomembr 1151:201–15.
  • Hoffman J, Laakkonen P, Porkka K, et al. (2004). In: Clackson T, Lowman H, eds. Phage display: a practical approach. Oxford, England: Oxford University Press, 171–92.
  • Jiang K, Song X, Yang L, et al. (2018). Enhanced antitumor and anti-metastasis efficacy against aggressive breast cancer with a fibronectin-targeting liposomal doxorubicin. J Control Release 271:21–30.
  • King KL, Hwang JJ, Chau GY, et al. (1998). Ki-67 expression as a prognostic marker in patients with hepatocellular carcinoma. J Gastroenterol Hepatol 13:273–9.
  • Kumari P, Ghosh B, Biswas S. (2016). Nanocarriers for cancer-targeted drug delivery. J Drug Target 24:179–91.
  • Li F, Zhao X, Wang H, et al. (2015). Multiple layer-by-layer lipid-polymer hybrid nanoparticles for improved folfirinox chemotherapy in pancreatic tumor models. Adv Funct Mater 25:788–98.
  • Mezö G, Manea M, Jakab AM, et al. (2004). Synthesis and structural characterization of bioactive peptide conjugates using thioether linkage approaches. J Pept Sci 10:701–13.
  • Pilch J, Brown DM, Komatsu M, et al. (2006). Peptides selected for binding to clotted plasma accumulate in tumor stroma and wounds. Proc Natl Acad Sci USA 103:2800–4.
  • Randelovic I, Schuster S, Kapuvári B, et al. (2019). Improved in vivo anti-tumor and anti-metastatic effect of GnRH-III-daunorubicin analogs on colorectal and breast carcinoma bearing mice. Int J Mol Sci 20:4763(1–26).
  • Siegfried JM, Burke TG, Tritton TR. (1985). Cellular transport of anthracyclines by passive diffusion. Implications for drug resistance. Biochem Pharmacol 34:593–8.
  • Simberg D, Duza T, Park JH, et al. (2007). Biomimetic amplification of nanoparticle homing to tumors. Proc Natl Acad Sci USA 104:932–6.
  • Soler M, González-Bártulos M, Soriano-Castell D, et al. (2014). Identification of BP16 as a non-toxic cell-penetrating peptide with highly efficient drug delivery properties. Org Biomol Chem 12:1652–63.
  • Ventola CL. (2017). Progress in nanomedicine: approved and investigational nanodrugs. Pharm Ther 42:742–55.
  • Vrettos EI, Mező G, Tzakos AG. (2018). On the design principles of peptide–drug conjugates for targeted drug delivery to the malignant tumor site. Beilstein J Org Chem 14:930–54.
  • Wan X, Liu C, Lin Y, et al. (2019). pH sensitive peptide functionalized nanoparticles for co-delivery of erlotinib and DAPT to restrict the progress of triple negative breast cancer. Drug Deliv 26:470–80.
  • Wang C, Wang X, Zhong T, et al. (2015). The antitumor activity of tumor-homing peptide-modified thermosensitive liposomes containing doxorubicin on MCF-7/ADR: in vitro and in vivo. Int J Nanomedicine 10:2229–48.
  • Wang H, Wu Y, Zhao R, Nie G. (2013). Engineering the assemblies of biomaterial nanocarriers for delivery of multiple theranostic agents with enhanced antitumor efficacy. Adv Mater 25:1616–22.
  • Weigelt B, Peterse JL, van ‘t Veer LJ. (2005). Breast cancer metastasis: Markers and models. Nat Rev Cancer 5:591–602.
  • Willingham MC, Cornwell MM, Cardarelli CO, et al. (1986). Single cell analysis of daunomycin uptake and efflux in multidrug-resistant and -sensitive KB cells: effects of verapamil and other drugs. Cancer Res 46:5941–6.
  • Xiong S, Yu B, Wu J, et al. (2011). Preparation, therapeutic efficacy and intratumoral localization of targeted daunorubicin liposomes conjugating folate-PEG-CHEMS. Biomed Pharmacother 65:2–8.
  • Zaleskis G, Garberyte S, Pavliukeviciene B, et al. (2021). Comparative evaluation of cellular uptake of free and liposomal doxorubicin following short term exposure. Anticancer Res 41:2363–70.
  • Zhang Y, Wei J, Liu S, et al. (2017). Inhibition of platelet function using liposomal nanoparticles blocks tumor metastasis. Theranostics 7:1062–71.