1,891
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Arenobufagin-loaded PEG-PLA nanoparticles for reducing toxicity and enhancing cancer therapy

, , , , , , , , , , , ORCID Icon, , , & show all
Article: 2177362 | Received 26 Oct 2022, Accepted 02 Jan 2023, Published online: 11 Feb 2023

References

  • Arnold WR, Das A. (2018). An emerging pathway of doxorubicin cardiotoxicity mediated through Cyp2j2. ACS Publications 57:1–11.
  • Bohr A, Wang Y, Harmankaya N, et al. (2017). Molecular weight-dependent degradation and drug release of surface-eroding poly(ethylene carbonate). Eur J Pharm Biopharm 115:140–8.
  • Cabral H, Kataoka K. (2014). Progress of drug-loaded polymeric micelles into clinical studies. J Control Release 190:465–76.
  • Chen J, Ning E, Wang Z, et al. (2021). Docetaxel loaded Mpeg-Pla nanoparticles for sarcoma therapy: preparation, characterization, pharmacokinetics, and anti-tumor efficacy.
  • Chen Y, Yue Q, De G, et al. (2017). Inhibition of breast cancer metastasis by paclitaxel-loaded Ph responsive poly (Β-amino ester) copolymer micelles. Nanomedicine (Lond) 12:147–64.
  • Chen Z, Zhai XF, Su YH, et al. (2003). Clinical observation of cinobufacini injection used to treat moderate and advanced primary liver cancer. Zhong Xi Yi Jie He Xue Bao 1:184–6.
  • Deng L-J, Peng Q-L, Wang L-H, et al. (2015). Arenobufagin intercalates with DNA leading to G2 cell cycle arrest via Atm/Atr pathway. Oncotarget 6:34258–75.
  • Deng L-J, Wang L-H, Peng C-K, et al. (2017). Fibroblast activation protein Α activated tripeptide bufadienolide antitumor prodrug with reduced cardiotoxicity. J Med Chem 60:5320–33.
  • Ding X-L, Liu M-D, Cheng Q, et al. (2022). Multifunctional liquid metal-based nanoparticles with glycolysis and mitochondrial metabolism inhibition for tumor photothermal therapy. Biomaterials 281:121369.
  • Dong S, Dong Y, Jia T, et al. (2020). Sequential catalytic, magnetic targeting nanoplatform for synergistic photothermal and Nir-enhanced chemodynamic therapy. Chem Mater 32:9868–81.
  • Esselink F, Semenov A, Ten Brinke G, et al. (1993). Formation and structural ordering of micelles of block copolymers in a thin-film-homopolymer matrix. Phys Rev B Condens Matter 48:13451–8.
  • Fang J, Islam W, Maeda H. (2020). Exploiting the dynamics of the Epr effect and strategies to improve the therapeutic effects of nanomedicines by using Epr effect enhancers. Adv Drug Deliv Rev 157:142–60.
  • Fu LH, Wan Y, Qi C, et al. (2021). Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy. Adv Mater 33:2006892.
  • Geng Z, Chen F, Wang X, et al. (2021). Combining anti-Pd-1 antibodies with Mn2+-drug coordinated multifunctional nanoparticles for enhanced cancer therapy. Biomaterials 275:120897.
  • Gong C, Wang C, Wang Y, et al. (2012). Efficient inhibition of colorectal peritoneal carcinomatosis by drug loaded micelles in thermosensitive hydrogel composites. Nanoscale 4:3095–104.
  • Hao D-L, Wang Y-J, Yang J-Y, et al. (2022). The alleviation of Lps-induced murine acute lung injury by Gsh-mediated pegylated artesunate prodrugs. Front Pharmacol 13:860492.
  • Hao D-L, Xie R, De G-J, et al. (2020). Ph-responsive artesunate polymer prodrugs with enhanced ablation effect on rodent xenograft colon cancer. Int J Nanomed 15:1771–86.
  • Huang Y, Wu S, Zhang L, et al. (2022). A metabolic multistage glutathione depletion used for tumor-specific chemodynamic therapy. ACS Nano 16:4228–38.
  • Jia L, Gao Y, Zhou T, et al. (2021). Enhanced response to Pd-L1 silencing by modulation of Tme via balancing glucose metabolism and robust co-delivery of Sirna/resveratrol with dual-responsive polyplexes. Biomaterials 271:120711.
  • Kang B-S, Choi J-S, Lee S-E, et al. (2017). Enhancing the in vitro anticancer activity of albendazole incorporated into chitosan-coated Plga nanoparticles. Carbohydr Polym 159:39–47.
  • Kim JY, Do YR, Song HS, et al. (2017). Multicenter phase II clinical trial of Genexol-Pm® with gemcitabine in advanced biliary tract cancer. Anticancer Res 37:1467–73.
  • Kim SC, Kim DW, Shim YH, et al. (2001). In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release 72:191–202.
  • Kim SC, Yoon HJ, Lee JW, et al. (2005). Investigation of the release behavior of Dehp from infusion sets by paclitaxel-loaded polymeric micelles. Int J Pharm 293:303–10.
  • Kostakis C, Byard RW. (2009). Sudden death associated with intravenous injection of toad extract. Forensic Sci Int 188:e1–e5.
  • Lee KS, Chung HC, Im SA, et al. (2008). Multicenter phase II trial of Genexol-Pm, a cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 108:241–50.
  • Li C, Hashimi SM, Cao S, et al. (2013). The mechanisms of chansu in inducing efficient apoptosis in colon cancer cells. Evid Based Complement Alternat Med 2013:849054.
  • Li L, Leung PS. (2014). Use of herbal medicines and natural products: an alternative approach to overcoming the apoptotic resistance of pancreatic cancer. Int J Biochem Cell Biol 53:224–36.
  • Li W, Lin X, Yang Z, et al. (2015). A bufadienolide-loaded submicron emulsion for oral administration: stability, antitumor efficacy and toxicity. Int J Pharm 479:52–62.
  • Liu B, Wang W, Fan J, et al. (2019). Rbc membrane camouflaged prussian blue nanoparticles for gamabutolin loading and combined chemo/photothermal therapy of breast cancer. Biomaterials 217:119301.
  • Luo S, Wang Y, Shen S, et al. (2021). Ir780-loaded hyaluronic Acid@ Gossypol–Fe (Iii)–Egcg infinite coordination polymer nanoparticles for highly efficient tumor photothermal/coordinated dual drugs synergistic therapy. Adv Funct Mater 31:2100954.
  • Maeda H, Wu J, Sawa T, et al. (2000). Tumor vascular permeability and the Epr effect in macromolecular therapeutics: a review. J Controlled Release 65:271–84.
  • Meng Z, Yang P, Shen Y, et al. (2009). Pilot study of huachansu in patients with hepatocellular carcinoma, nonsmall-cell lung cancer, or pancreatic cancer. Cancer 115:5309–18.
  • Park K, Skidmore S, Hadar J, et al. (2019). Injectable, long-acting Plga formulations: analyzing Plga and understanding microparticle formation. J Control Release 304:125–34.
  • Qiu L-Y, Yan L, Zhang L, et al. (2013). Folate-modified poly (2-ethyl-2-oxazoline) as hydrophilic corona in polymeric micelles for enhanced intracellular doxorubicin delivery. Int J Pharm 456:315–24.
  • Tipnis NP, Burgess DJ. (2018). Sterilization of implantable polymer-based medical devices: a review. Int J Pharm 544:455–60.
  • Torchilin V. (2011). Tumor delivery of macromolecular drugs based on the Epr effect. Adv Drug Deliv Rev 63:131–5.
  • Wang J, Yuan Z. (2013). Gambogic acid sensitizes ovarian cancer cells to doxorubicin through Ros-mediated apoptosis. Cell Biochem Biophys 67:199–206.
  • Wang W, Niu S, Qiao L, et al. (2019). Usnea acid as multidrug resistance (Mdr) reversing agent against human chronic myelogenous leukemia K562/Adr cells via an Ros dependent apoptosis. BioMed Res Int 2019:8727935.
  • Xia X, Cole SP, Cai T, et al. (2017). Effect of traditional Chinese medicine components on multidrug resistance in tumors mediated by P-glycoprotein. Oncol Lett 13:3989–96.
  • Xiao X, Wang K, Zong Q, et al. (2021). Polyprodrug with glutathione depletion and cascade drug activation for multi-drug resistance reversal. Biomaterials 270:120649.
  • Xie J, Dey L, Wu J, et al. (2001). Cardiac toxicity of resibufogenin: electrophysiological evidence. Acta Pharmacol Sin 22:289–97.
  • Yang B, Chen Y, Shi J. (2020). Tumor-specific chemotherapy by nanomedicine-enabled differential stress sensitization. Angew Chem 132:9780–8.
  • Ying L, Wang P, Chen S, et al. (2011). Bioadhesion and enhanced bioavailability by wheat germ agglutinin-grafted lipid nanoparticles for oral delivery of poorly water-soluble drug bufalin. Int J Pharm 419:260–5.
  • Yu M, Zeng W, Ouyang Y, et al. (2022). Atp-exhausted nanocomplexes for intratumoral metabolic intervention and photoimmunotherapy. Biomaterials 284:121503.
  • Yu M, Zhao M, Yu R, et al. (2019). Nanotechnology-mediated immunochemotherapy with ingenol-3-mebutate for systematic anti-tumor effects. J Control Release 304:242–58.
  • Yu Z, Guo W, Ma X, et al. (2014). Gamabufotalin, a bufadienolide compound from toad venom, suppresses Cox-2 expression through targeting Ikkβ/Nf-Κb signaling pathway in lung cancer cells. Mol Cancer 13:1–14.
  • Yuan X, Xie Q, Su K, et al. (2017). Systemic delivery of the anticancer agent arenobufagin using polymeric nanomicelles. Int J Nanomedicine 12:4981–9.
  • Zhang D-M, Liu J-S, Deng L-J, et al. (2013). Arenobufagin, a natural bufadienolide from toad venom, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of Pi3k/Akt/Mtor pathway. Carcinogenesis 34:1331–42.
  • Zhang L, Nakaya K, Yoshida T, et al. (1992). Induction by bufalin of differentiation of human leukemia cells Hl60, U937, and Ml1 toward macrophage/monocyte-like cells and its potent synergistic effect on the differentiation of human leukemia cells in combination with other inducers. Cancer Res 52:4634–41.
  • Zhang M, Wang W, Wu F, et al. (2020). biodegradable Poly (Γ-glutamic acid)@ glucose oxidase@ carbon dot nanoparticles for simultaneous multimodal imaging and synergetic cancer therapy. Biomaterials 252:120106.
  • Zhang S, Zhang Y, Feng Y, et al. (2022). Biomineralized two-enzyme nanoparticles regulate tumor glycometabolism inducing tumor cell pyroptosis and robust antitumor immunotherapy. Adv Mater 34:2206851.