1,607
Views
3
CrossRef citations to date
0
Altmetric
Research Article

A quality by design approach for the synthesis of palmitoyl-L-carnitine-loaded nanoemulsions as drug delivery systems

, , , &
Article: 2179128 | Received 21 Dec 2022, Accepted 06 Feb 2023, Published online: 19 Feb 2023

References

  • Åberg C, Piattelli V, Montizaan D, Salvati A. (2021). Sources of variability in nanoparticle uptake by cells. Nanoscale 13:1–12.
  • Bernatoniene J, Majiene D, Peciura R, et al. (2011). The effect of Ginkgo Biloba extract on mitochondrial oxidative phosphorylation in the normal and ischemic rat heart. Phytother Res 25:1054–60.
  • Blaho VA, Hla T. (2014). An update on the biology of sphingosine 1-phosphate receptors. J Lipid Res 55:1596–608.
  • Blessy M, Patel RD, Prajapati PN, Agrawal YK. (2014). Development of forced degradation and stability indicating studies of drugs—A review. J Pharm Anal 4:159–65.
  • Boedtkjer E, Pedersen SF. (2020). The acidic tumor microenvironment as a driver of cancer. Annu Rev Physiol 82:103–26.
  • Busmann EF, Lucas H. (2022). Particle engineering of innovative nanoemulsion designs to modify the accumulation in female sex organs by particle size and surface charge. Pharmaceutics 14:301.
  • Chinigò G, Gilardino A, et al. (2022). Polymethine dyes-loaded solid lipid nanoparticles (SLN) as promising photosensitizers for biomedical applications. Spectrochim Acta A Mol Biomol Spectrosc 271:120909.
  • Danaei M, Dehghankhold M, Ataei S, et al. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10:57.
  • Daull P, Lallemand F, Garrigue JS. (2014). Benefits of cetalkonium chloride cationic oil-in-water nanoemulsions for topical ophthalmic drug delivery. J Pharm Pharmacol 66:531–41.
  • Dhiman N, Awasthi R, Sharma B, et al. (2021). Lipid nanoparticles as carriers for bioactive delivery. Front Chem 9:580118.
  • Eh Suk VR, Mohd Latif F, Teo YY, Misran M. (2020). Development of nanostructured lipid carrier (NLC) assisted with polysorbate nonionic surfactants as a carrier for l-ascorbic acid and gold Tri.E 30. J Food Sci Technol 57:3259–66.
  • Fan W, Yu Z, Peng H, et al. (2020). Effect of particle size on the pharmacokinetics and biodistribution of parenteral nanoemulsions. Int J Pharm 586:119551.
  • González-Fernández FM, Bianchera A, Gasco P, et al. (2021). Lipid-based nanocarriers for ophthalmic administration: towards experimental design implementation. Pharmaceutics 13:447.
  • Gupta A, Burak Eral H, Hatton TA, Doyle PS. (2016). Nanoemulsions: formation, properties and applications. Soft Matter 12:2826–41.
  • Guzmán E, Fernández-Peña L, Rossi L, et al. (2021). Nanoemulsions for the encapsulation of hydrophobic actives. Cosmetics 8:45.
  • Handa M, Raman Ujjwal R, Vasdev N, et al. (2021). Optimization of surfactant- and cosurfactant-aided pine oil nanoemulsions by isothermal low-energy methods for anticholinesterase activity. ACS Omega 6:559–68.
  • Hirsjärvi S, Dufort S, Gravier J, et al. (2013). Influence of size, surface coating and fine chemical composition on the in vitro reactivity and in vivo biodistribution of lipid nanocapsules versus lipid nanoemulsions in cancer models. Nanomedicine 9:375–87.
  • Jain S. (2014). Quality by design (QBD): a comprehensive understanding of implementation and challenges in pharmaceuticals development. Int J Pharm Pharm Sci 6:29–35.
  • Khachane PV, Jain AS, Dhawan VV, et al. (2015). Cationic nanoemulsions as potential carriers for intracellular delivery. Saudi Pharm J 23:188–94.
  • Klein S, Luchs T, Leng A, et al. (2020). Encapsulation of hydrophobic drugs in shell-by-shell coated nanoparticles for radio—and chemotherapy—an in vitro study. Bioengineering 7:126.
  • Kumar R, Roy I, Ohulchanskky TY, et al. (2010). In vivo biodistribution and clearance studies using multimodal organically modified silica manoparticles. ACS Nano 4:699–708.
  • Kuncahyo I, Choiri S, Fudholi A, et al. (2019). Assessment of fractional factorial design for the selection and screening of appropriate components of a self-nanoemulsifying drug delivery system formulation. Adv Pharm Bull 9:609–18.
  • Lee R. (2019). Statistical design of experiments for screening and optimization. Chem Ing Tech 91:191–200.
  • Liu Y, Yang G, Jin S, et al. (2020). Development of high-drug-loading nanoparticles. Chempluschem 85:2143–57.
  • Louage B, Tack L, Wang Y, Geest BGD. (2017). Poly(glycerol sebacate) nanoparticles for encapsulation of hydrophobic anti-cancer drugs. Polym Chem 8:5033–8.
  • Lu H, Zhang S, Wang J, Chen Q. (2021). A review on polymer and lipid-based nanocarriers and its application to nano-pharmaceutical and food-based systems. Front Nutr 8:783831.
  • Mamusa M, F, Barbero C, Montis, et al. (2017). Inclusion of oligonucleotide antimicrobials in biocompatible cationic liposomes: a structural study. J Colloid Interface Sci 508:476–87.
  • Mannucci S, Boschi F, Cisterna B, et al. (2020). A correlative imaging study of in vivo and ex vivo biodistribution of solid lipid nanoparticles. Int J Nanomed 15:1745–58.
  • Mitchell MJ, Billingsley MM, Haley RM, et al. (2021). Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 20:101–24.
  • Moore TL, Rodriguez-Lorenzo L, Hirsch V, et al. (2015). Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev 44:6287–305.
  • Nazarenus M, Zhang Q, Soliman MG, et al. (2014). In vitro interaction of colloidal nanoparticles with mammalian cells: what have we learned thus far? Beilstein J Nanotechnol 5:1477–90.
  • Nielsen PB, Müllertz A, Norling T, Kristensen HG. (2001). The effect of α-tocopherol on the in vitro solubilisation of lipophilic drugs. Int J Pharm 222:217–24.
  • Paliwal R, Babu RJ, Palakurthi S. (2014). Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech 15: 1527–34.
  • Percival SL, McCartyJohn S, Hunt A, et al. (2014). The effects of PH on wound healing, biofilms, and antimicrobial efficacy. Wound Repair Regen 22:174–86.
  • Prasad C, Bhatia E, Banerjee R. (2020). Curcumin encapsulated lecithin nanoemulsions: an oral platform for ultrasound mediated spatiotemporal delivery of curcumin to the tumor. Sci Rep 10:8587.
  • Saberi AS, Fang Y, McClements DJ. (2013). Fabrication of vitamin E-enriched nanoemulsions: factors affecting particle size using spontaneous emulsification. J Colloid Interface Sci 391:95–102.
  • Sánchez-López E, Guerra M, Dias-Ferreira, J, et al. (2019). Current applications of nanoemulsions in cancer therapeutics. Nanomaterials 9:821.
  • Sarheed O, Dibi M, Ramesh KVRNS. (2020). Studies on the effect of oil and surfactant on the formation of alginate-based O/W lidocaine nanocarriers using nanoemulsion template. Pharmaceutics 12:1223.
  • Schubert MA, Müller-Goymann CC. (2003). Solventionjection as a new approach for manufacturing lipid nanoparticles – evaluation of the method and process parameters. Eur J Pharm Biopharm 55:125–31.
  • Shakhwar S, Darwish R, Kamal MM, et al. (2020). Development and evaluation of paclitaxel nanoemulsion for cancer therapy. Pharm Dev Technol 25:510–6.
  • Sharma N, Madan P, Lin S. (2016). Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: a co-surfactant study. Asian J Pharm Sci 11:404–16.
  • Tavares Luiz M, Santos Rosa Viegas J, Palma Abriata, J, et al. (2021). Design of experiments (DoE) to develop and to optimize nanoparticles as drug delivery systems. Eur J Pharm Biopharm 165:127–48.
  • Thi TH, Suys EJA, Lee JS, et al. (2021). Lipid-based nanoparticles in the clinic and clinical trials: from cancer nanomedicine to COVID-19 vaccines. Vaccines (Basel) 9:359.
  • Tinoco LMS, Silva Ferreira FLO, LAM, et al. (2018). Hyaluronic acid-coated nanoemulsions loaded with a hydrophobic ion pair of all-trans retinoic acid for improving the anticancer activity. Braz J Pharm Sci 54:1–10.
  • Wang P, Keller AA. (2009). Natural and engineered nano and colloidal transport: role of zeta potential in prediction of particle deposition. Langmuir 25:6856–62.
  • Wenderska IB, Chong M, McNulty J, et al. (2011). Palmitoyl-Dl-carnitine is a multitarget inhibitor of pseudomonas aeruginosa biofilm development. ChemBioChem 12:2759–66.
  • Yang G, Liu Y, Wang H, et al. (2019). Bioinspired core–shell nanoparticles for hydrophobic drug delivery. Angew Chem 131:14495–502.
  • Young CC, Vedadghavami A, Bajpayee AG. (2020). Bioelectricity for drug delivery: the promise of cationic therapeutics. Bioelectricity 2:68–81.