1,909
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Phytic acid-modified manganese dioxide nanoparticles oligomer for magnetic resonance imaging and targeting therapy of osteosarcoma

, , , , ORCID Icon, & show all
Article: 2181743 | Received 30 Dec 2022, Accepted 13 Feb 2023, Published online: 01 Mar 2023

References

  • Ambrosio L, Raucci MG, Vadala G, et al. (2021). Innovative biomaterials for the treatment of bone cancer. Int J Mol Sci 22:1.
  • Bloot APM, Kalschne DL, Amaral JAS, et al. (2021). A review of phytic acid sources, obtention, and applications. Food Rev Int 37:1–10.
  • Chen K, Zhang SH, Li AR, et al. (2018). Bioinspired interfacial chelating-like reinforcement strategy toward mechanically enhanced lamellar materials. ACS Nano 12:4269–10.
  • Fu LW, Zhang WY, Zhou XJ, et al. (2022). Tumor cell membrane-camouflaged responsive nanoparticles enable mri-guided immuno-chemodynamic therapy of orthotopic osteosarcoma. Bioact Mater 17:221–33.
  • Gao MW, Song YB, Liu YD, et al. (2021). Controlled fabrication of Au@MnO2 core/shell assembled nanosheets by localized surface plasmon resonance. Appl Surf Sci 537:147912.
  • Guo SY, Sun D, Ni DL, et al. (2020). Smart tumor microenvironment-responsive nanotheranostic agent for effective cancer therapy. Adv Funct Mater 30:2000486.
  • Hafez AA, Naserzadeh P, Mortazavian AM, et al. (2019). Comparison of the effects of MnO2-NPs and MnO2-MPs on mitochondrial complexes in different organs. Toxicol Mech Methods 29:86–94.
  • Heyder RS, Sunbul FS, Almuqbil RM, et al. (2021). Poly(anhydride-ester) gemcitabine: synthesis and particle engineering of a high payload hydrolysable polymeric drug for cancer therapy. J Control Release 330:1178–90.
  • Huang QL, Pan YJ, Wang M, et al. (2022). Tumor microenvironment-responsive versatile “trojan horse” theranostic nanoplatform for magnetic resonance imaging-guided multimodal synergistic antitumor treatment. Acta Biomater 147:270–86.
  • Jiang XM, Gray P, Patel M, et al. (2020). Crossover between anti- and pro-oxidant activities of different manganese oxide nanoparticles and their biological implications. J Mater Chem B 8:1191–201.
  • Jiang ZY, Liu JB, Wang XF, et al. (2022). Current status and prospects of clinical treatment of osteosarcoma. Technol Cancer Res Treat 21:15330338221124696.
  • Jing DD, Wu W, Chen XZ, et al. (2022). Quercetin encapsulated in folic acid-modified liposomes is therapeutic against osteosarcoma by non-covalent binding to the jh2 domain of jak2 via the jak2-stat3-pdl1. Pharmacol Res 182:106287.
  • Jo DH, Kim JH, Lee TG, et al. (2015). Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomed Nanotechnol Biol Med 11:1603–11.
  • Li DJ, Zhang T, Min CW, et al. (2020). Biodegradable theranostic nanoplatforms of albumin-biomineralized nanocomposites modified hollow mesoporous organosilica for photoacoustic imaging guided tumor synergistic therapy. Chem Eng J 388:124253.
  • Lim YG, Kim HJ, Park K. (2021). A novel method for synthesizing manganese dioxide nanoparticles using diethylenetriamine pentaacetic acid as a metal ion chelator. J Ind Eng Chem 93:407–14.
  • Lin LS, Song JB, Song L, et al. (2018). Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew Chem Int Ed 57:4902–6.
  • Lin TS, Zhao XZ, Zhao S, et al. (2018). O-2-generating MnO2 nanoparticles for enhanced photodynamic therapy of bladder cancer by ameliorating hypoxia. Theranostics 8:990–1004.
  • Liu J, Feng LD, Wu YZ. (2021). Enzymatically synthesised MnO2 nanoparticles for efficient near-infrared photothermal therapy and dual-responsive magnetic resonance imaging. Nanoscale 13:11093–103.
  • Liu JZ, Zhang WZ, Kumar A, et al. (2020). Acridine orange encapsulated mesoporous manganese dioxide nanoparticles to enhance radiotherapy. Bioconjugate Chem 31:82–92.
  • Liu XY, Kifle MT, Xie HX, et al. (2022). Biomineralized manganese oxide nanoparticles synergistically relieve tumor hypoxia and activate immune response with radiotherapy in non-small cell lung cancer. Nanomaterials 12:3138.
  • Lux PE, Fuchs L, Wiedmaier-Czerny N, et al. (2022). Oxidative stability of tocochromanols, carotenoids, and fatty acids in maize (zea mays l.) porridges with varying phytate concentrations during cooking and in vitro digestion. Food Chem 378:132053.
  • Ma ZY, Xu YF, Li PP, et al. (2021). Self-catalyzed surface reaction-induced fluorescence resonance energy transfer on cysteine-stabilized MnO2 quantum dots for selective detection of dopamine. Anal Chem 93:3586–93.
  • Marin E, Tapeinos C, Lauciello S, et al. (2020). Encapsulation of manganese dioxide nanoparticles into layer-by-layer polymer capsules for the fabrication of antioxidant microreactors. Mater Sci Eng C Mater Biol Appl 117:111349.
  • Masunaga T, Murao N, Tateishi H, et al. (2019). Anti-cancer activity of the cell membrane-permeable phytic acid prodrug. Bioorg Chem 92:103240.
  • Niu YT, Yang Y, Yang Z, et al. (2022). Aptamer-immobilized bone-targeting nanoparticles in situ reduce sclerostin for osteoporosis treatment. Nano Today 45:101529.
  • Ogawa K, Ishizaki A, Takai K, et al. (2017). Evaluation of Ga-DOTA (D-Asp)n as bone imaging agents: d-aspartic acid peptides as carriers to bone. Sci Rep 7:13971.
  • Peira E, Chirio D, Sapino S, et al. (2022). Naked and decorated nanoparticles containing h2s-releasing doxorubicin: preparation, characterization and assessment of their antitumoral efficiency on various resistant tumor cells. Int J Mol Sci 23:11555.
  • Rathore R, Van Tine BA. (2021). Pathogenesis and current treatment of osteosarcoma: perspectives for future therapies. J Clin Med 10:1182.
  • Siegel RL, Miller KD, Fuchs HE, et al. (2021). Cancer statistics, 2021. CA Cancer J Clin 71:7–33.
  • Sun FJ, Wang Y, Wang QM, et al. (2022). Self-illuminating triggered release of therapeutics from photocleavable nanoprodrug for the targeted treatment of breast cancer. ACS Appl Mater Interfaces 14:8766–81.
  • Vucenik I, Druzijanic A, Druzijanic N. (2020). Inositol hexaphosphate (ip6) and colon cancer: from concepts and first experiments to clinical application. Molecules 25:5931.
  • Wang CP, Li L, Zhang S, et al. (2020). Carrier-free platinum nanomedicine for targeted cancer therapy. Small 16:e2004829.
  • Wang L, Li D, Hao YW, et al. (2017). Gold nanorod-based poly(lactic-co-glycolic acid) with manganese dioxide core-shell structured multifunctional nanoplatform for cancer theranostic applications. Int J Nanomed 12:3059–74.
  • Wu DC, Wan MX. (2012). Methylene diphosphonate-conjugated adriamycin liposomes: Preparation, characteristics, and targeted therapy for osteosarcomas in vitro and in vivo. Biomed Microdevices 14:497–510.
  • Wu KZ, Yu BB, Li D, et al. (2022). Recent advances in nanoplatforms for the treatment of osteosarcoma. Front Oncol 12:805978.
  • Yang CF, Tian Y, Zhao F, et al. (2020). Bone microenvironment and osteosarcoma metastasis. Int J Mol Sci 21:6985.
  • Yang LF, Ren CC, Xu M, et al. (2020). Rod-shape inorganic biomimetic mutual-reinforcing MnO2-Au nanozymes for catalysis-enhanced hypoxic tumor therapy. Nano Res 13:2246–58.
  • Yang LT, Chueng STD, Li Y, et al. (2018). A biodegradable hybrid inorganic nanoscaffold for advanced stem cell therapy. Nat Commun 9:3147.
  • Zhang L, Yang Z, Ren JH, et al. (2020). Multifunctional oxygen-enriching nano-theranostics for cancer-specific magnetic resonance imaging and enhanced photodynamic/photothermal therapy. Nano Res 13:1389–98.
  • Zhang Y, Wang F, Li MQ, et al. (2018). Self-stabilized hyaluronate nanogel for intracellular codelivery of doxorubicin and cisplatin to osteosarcoma. Adv Sci 5:1700821.
  • Zhao ZX, Ma FM, Zhang BQ. (2022). Study on preservation method and mechanism of peeling waxy corn kernels treated with composite film. J Food Process Preserv 46:e16451.
  • Zhou Q, Zhao Y, Dang H, et al. (2019). Antibacterial effects of phytic acid against foodborne pathogens and investigation of its mode of action. J Food Prot 82:826–33.
  • Zhou ZJ, Fan TQ, Yan Y, et al. (2019). One stone with two birds: Phytic acid-capped platinum nanoparticles for targeted combination therapy of bone tumors. Biomaterials 194:130–8.