1,550
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Tumor microenvironment-responsive micelles assembled from a prodrug of mitoxantrone and 1-methyl tryptophan for enhanced chemo-immunotherapy

, , , , , , & show all
Article: 2182254 | Received 21 Dec 2022, Accepted 30 Jan 2023, Published online: 25 Feb 2023

References

  • An J, Peng C, Tang H, et al. (2021). New advances in the research of resistance to neoadjuvant chemotherapy in breast cancer. IJMS 22:1.
  • Behroozi F, Abdkhodaie M, Abandansari H, et al. (2018). Engineering folate-targeting diselenide-containing triblock copolymer as a redox-responsive shell-sheddable micelle for antitumor therapy in vivo. Acta Biomater 76:239–12.
  • Chen D, Yu Q, Huang X, et al. (2020). A highly-efficient type I photosensitizer with robust vascular-disruption activity for hypoxic-and-metastatic tumor specific photodynamic therapy. Small 16:2001059.
  • Di Donato M, Giovannelli P, Migliaccio A, et al. (2022). Inhibition of Vps34 and p110δ PI3K impairs migration, invasion and three-dimensional spheroid growth in breast cancer cells. IJMS 23:9008.
  • Dudek A, Garg A, Krysko D, et al. (2013). Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev 24:319–33.
  • Evison B, Sleebs B, Watson K, et al. (2016). Mitoxantrone, more than just another topoisomerase II poison. Med Res Rev 36:248–99.
  • Fang Y, Wang K, Li Q, et al. (2021). pH responsive release of paclitaxel by self-assembling Chitosan-ethyl vanillin@GNRs nanocomposites. Int J Pharm 607:121047.
  • Feng B, Zhou F, Hou B, et al. (2018). Binary cooperative prodrug nanoparticles improve immunotherapy by synergistically modulating immune tumor microenvironment. Adv Mater 30:1803001.
  • Fronik P, Poetsch I, Kastner A, et al. (2021). Structure-activity relationships of triple-action platinum(IV) prodrugs with albumin-binding properties and immunomodulating ligands. J Med Chem 64:12132–51.
  • Granja A, Lima-Sousa R, Alves C, et al. (2021). Mitoxantrone-loaded lipid nanoparticles for breast cancer therapy - Quality-by-design approach and efficacy assessment in 2D and 3D in vitro cancer models. Int J Pharm 607:121044.
  • Günther J, Däbritz J, Wirthgen E. (2019). Limitations and off-target effects of tryptophan-related IDO inhibitors in cancer treatment. Front Immunol 10:1801.
  • Guo X, Cheng Y, Zhao X, et al. (2018). Advances in redox-responsive drug delivery systems of tumor microenvironment. J Nanobiotechnol 16:74.
  • Han X, Cheng K, Xu Y, et al. (2020). Modularly designed peptide nanoprodrug augments antitumor immunity of PD-L1 checkpoint blockade by targeting indoleamine 2,3-dioxygenase. J Am Chem Soc 142:2490–6.
  • Henriques B, Mendes F, Martins D. (2021). Immunotherapy in breast cancer: when, how, and what challenges? Biomedicines 9:1687.
  • Huang G, Tao A, Miyazaki T, et al. (2019). PEG-poly(1-Methyl-l-Tryptophan)-based polymeric micelles as enzymatically activated inhibitors of indoleamine 2,3-dioxygenase. Nanomaterials 9:719.
  • Huang F-Y, Wang J-Y, Dai S-Z, et al. (2020). A recombinant oncolytic Newcastle virus expressing MIP-3α promotes systemic antitumor immunity. J Immunother Cancer 8:e000330.
  • Kepp O, Sauvat A, Leduc M, et al. (2019). A fluorescent biosensor-based platform for the discovery of immunogenic cancer cell death inducers. OncoImmunology 8:1606665.
  • Kim M, Lee J, Kim W, et al. (2022). Aptamer-conjugated nano-liposome for immunogenic chemotherapy with reversal of immunosuppression. J Controlled Release 348:893–910.
  • Lan Y, Liang Q, Sun Y, et al. (2020). Co-delivered chemotherapeutic doxorubicin via a dual-functional immunostimulatory polymeric prodrug for breast cancer immunochemotherapy. ACS Appl Mater Interfaces 12:31904–21.
  • Li B, Cai M, Lin L, et al. (2019). MRI-visible and pH-sensitive micelles loaded with doxorubicin for hepatoma treatment. Biomater Sci 7:1529–42.
  • Li G, Gao Y, Gong C, et al. (2019). Dual-blockade immune checkpoint for breast cancer treatment based on a tumor-penetrating peptide assembling nanoparticle. ACS Appl Mater Interfaces 11:39513–24.
  • Li H, Li Y, Ao H, et al. (2018). Folate-targeting annonaceous acetogenins nanosuspensions: significantly enhanced antitumor efficacy in HeLa tumor-bearing mice. Drug Delivery 25:880–7.
  • Li Y, Lin J, Yang X, et al. (2015). Self-assembled nanoparticles based on amphiphilic anticancer drug-phospholipid complex for targeted drug delivery and intracellular dual-controlled release. ACS Appl Mater Interfaces 7:17573–81.
  • Li Q, Liu J, Fan H, et al. (2021). IDO-inhibitor potentiated immunogenic chemotherapy abolishes primary tumor growth and eradicates metastatic lesions by targeting distinct compartments within tumor microenvironment. Biomaterials 269:120388.
  • Li C, Sun H, Wei W, et al. (2020). Mitoxantrone triggers immunogenic prostate cancer cell death via p53-dependent PERK expression. Cell Oncol 43:1099–116.
  • Mei K, Liao Y, Jiang J, et al. (2020). Liposomal delivery of mitoxantrone and a cholesteryl indoximod prodrug provides effective chemo-immunotherapy in multiple solid tumors. ACS Nano 14:13343–66.
  • Retecki K, Seweryn M, Graczyk-Jarzynka A, et al. (2021). The immune landscape of breast cancer: strategies for overcoming immunotherapy resistance. Cancers 13:6012.
  • Selvan S, Dowling J, Kelly W, et al. (2016). Indoleamine 2,3-dioxygenase (IDO): biology and target in cancer immunotherapies. CCDT 16:755–64.
  • Tsao H, Cheng H, Kuo C, et al. (2022). Dual-sensitive gold-nanocubes platform with synergistic immunotherapy for inducing immune cycle using NIR-mediated PTT/NO/IDO. Pharmaceuticals 15:138.
  • Turubanova V, Balalaeva I, Mishchenko T, et al. (2019). Immunogenic cell death induced by a new photodynamic therapy based on photosens and photodithazine. J Immunother Cancer 7:350.
  • Wang Y, Cai D, Wu H, et al. (2018). Functionalized CuBiS nanoparticles for dual-modal imaging and targeted photothermal/photodynamic therapy. Nanoscale 10:4452–62.
  • Wang Y, Luo C, Zhou S, et al. (2021). Investigating the crucial roles of aliphatic tails in disulfide bond-linked docetaxel prodrug nanoassemblies. Asian J Pharm Sci 16:643–52.
  • Yang Z, Cheng R, Zhao C, et al. (2018). Thermo- and pH-dual responsive polymeric micelles with upper critical solution temperature behavior for photoacoustic imaging-guided synergistic chemo-photothermal therapy against subcutaneous and metastatic breast tumors. Theranostics 8:4097–115.
  • Yang Y, Li Y, Chen K, et al. (2020). Dual receptor-targeted and redox-sensitive polymeric micelles self-assembled from a folic acid-hyaluronic acid-SS-vitamin e succinate polymer for precise cancer therapy. Int J Nanomed 15:2885–902.
  • Yang Z, Luo X, Lin Y, et al. (2022). Tandem chemoimmunotherapy by a cascade-responsive molecular prodrug. ACS Chem Biol17:762–7.
  • Zhang D, Zhang J, Li Q, et al. (2019). Cold to hot: rational design of a minimalist multifunctional photo-immunotherapy nanoplatform toward boosting immunotherapy capability. ACS Appl Mater Interfaces 11:32633–46.
  • Zhang H, Zhang J, Li Q, et al. (2020). Site-specific MOF-based immunotherapeutic nanoplatforms via synergistic tumor cells-targeted treatment and dendritic cells-targeted immunomodulation. Biomaterials 245:119983.
  • Zhou F, Feng B, Yu H, et al. (2019). Tumor microenvironment-activatable prodrug vesicles for nanoenabled cancer chemoimmunotherapy combining immunogenic cell death induction and CD47 blockade. Adv Mater 31:1805888.
  • Zhou H, Forveille S, Sauvat A, et al. (2016). The oncolytic peptide LTX-315 triggers immunogenic cell death. Cell Death Dis 7:e2134.
  • Zhou Y, Ren X, Hou Z, et al. (2021). Engineering a photosensitizer nanoplatform for amplified photodynamic immunotherapy via tumor microenvironment modulation. Nanoscale Horiz 6:120–31.
  • Zhou S, Shang Q, Wang N, et al. (2020). Rational design of a minimalist nanoplatform to maximize immunotherapeutic efficacy: four birds with one stone. J Control Release 328:617–30.
  • Zhou J, Wang G, Chen Y, et al. (2019). Immunogenic cell death in cancer therapy: present and emerging inducers. J Cell Mol Med 23:4854–65.