2,233
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Biomimetic virus-like mesoporous silica nanoparticles improved cellular internalization for co-delivery of antigen and agonist to enhance Tumor immunotherapy

, , , , , , , , & show all
Article: 2183814 | Received 01 Dec 2022, Accepted 24 Jan 2023, Published online: 27 Feb 2023

References

  • Aichhorn S, Linhardt A, Halfmann A, et al. (2017). A pH-sensitive macromolecular prodrug as TLR7/8 targeting immune response modifier. Chemistry 23:1–16.
  • Cha BG, Jeong JH, Kim J. (2018). Extra-large pore mesoporous silica nanoparticles enabling co-delivery of high amounts of protein antigen and toll-like receptor 9 agonist for enhanced cancer vaccine efficacy. ACS Cent Sci 4:484–92.
  • Cheng R, Fontana F, Xiao J, et al. (2020). Recombination monophosphoryl lipid A-derived vacosome for the development of preventive cancer vaccines. ACS Appl Mater Interfaces 12:44554–62.
  • Day NB, Wixson WC, Shields C. W T. (2021). Magnetic systems for cancer immunotherapy. Acta Pharm Sin B 11:2172–96.
  • Duan F, Feng X, Yang X, et al. (2017). A simple and powerful co-delivery system based on pH-responsive metal-organic frameworks for enhanced cancer immunotherapy. Biomaterials 122:23–33.
  • Escriche-Navarro B, Escudero A, Lucena-Sánchez E, et al. (2022). Mesoporous silica materials as an emerging tool for cancer immunotherapy. Adv Sci (Weinh) 9:e2200756.
  • Farhood B, Najafi M, Mortezaee K. (2019). CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol 234:8509–21.
  • Feng ZH, Li ZT, Zhang S, et al. (2021). A combination strategy based on an Au nanorod/doxorubicin gel via mild photothermal therapy combined with antigen-capturing liposomes and anti-PD-L1 agent promote a positive shift in the cancer-immunity cycle. Acta Biomater 136:495–507.
  • Finn OJ. (2003). Cancer vaccines: between the idea and the reality. Nat Rev Immunol 3:630–41.
  • Halle S, Halle O, Förster R. (2017). Mechanisms and dynamics of T cell-mediated cytotoxicity in vivo. Trends Immunol 38:432–43.
  • Hu B, Wang J, Li J, et al. (2020). Superiority of L-tartaric acid modified chiral mesoporous silica nanoparticle as a drug carrier: structure, wettability, degradation, bio-adhesion and biocompatibility. Int J Nanomed 15:601–18.
  • Jiang D, Mu W, Pang X, et al. (2018). Cascade cytosol delivery of dual-sensitive micelle-tailored vaccine for enhancing cancer immunotherapy. ACS Appl Mater Interfaces 10:37797–811.
  • Kammer AR, Amacker M, Rasi S, et al. (2007). A new and versatile virosomal antigen delivery system to induce cellular and humoral immune responses. Vaccine 25:7065–74.
  • Keller S, Wilson JT, Patilea GI, et al. (2014). Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8(+) T cell responses. J Control Release 191:24–33.
  • Krishnamachari Y, Geary SM, Lemke CD, Salem AK. (2011). Nanoparticle delivery systems in cancer vaccines. Pharm Res 28:215–36.
  • Leleux J, Roy K. (2013). Micro and nanoparticle-based delivery systems for vaccine immunotherapy: an immunological and materials perspective. Adv Healthc Mater 2:72–94.
  • Lin W, Hanson S, Han W, et al. (2017). Well-defined star polymers for co-delivery of plasmid DNA and imiquimod to dendritic cells. Acta Biomater 48:378–89.
  • Lin J, Zhang H, Chen Z, Zheng Y. (2010). Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano 4:5421–9.
  • Li L, Song M, Lao X, et al. (2022). Rapid and ultrasensitive detection of SARS-CoV-2 spike protein based on upconversion luminescence biosensor for COVID-19 point-of-care diagnostics. Mater Des 223:111263.
  • Liu Q, Chen X, Jia J, et al. (2015). pH-responsive poly(D,L-lactic-co-glycolic acid) nanoparticles with rapid antigen release behavior promote immune response. ACS Nano 9:4925–38.
  • Liu Y, Li C, Xia H, et al. (2022). An injectable superior depot of Telratolimod inhibits post-surgical tumor recurrence and distant metastases. Acta Biomater 141:132–9.
  • Li J, Wang J, Yao Q, et al. (2020). Why synthetic virus-like nanoparticles can achieve higher cellular uptake efficiency? Nanoscale 12:14911–8.
  • Li J, Zhou S, Yu J, et al. (2021). Low dose shikonin and anthracyclines coloaded liposomes induce robust immunogenetic cell death for synergistic chemo-immunotherapy. J Control Release 335:306–19.
  • Luo Z, Shi S, Jin L, et al. (2015). Cationic micelle based vaccine induced potent humoral immune response through enhancing antigen uptake and formation of germinal center. Colloids Surf B Biointerfaces 135:556–64.
  • Mody KT, Popat A, Mahony D, et al. (2013). Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery. Nanoscale 5:5167–79.
  • Niu Y, Yu M, Hartono SB, et al. (2013). Nanoparticles mimicking viral surface topography for enhanced cellular delivery. Adv Mater 25:6233–7.
  • Peng X, Niemi AJ. (2021). Local topology and bifurcation hot-spots in proteins with SARS-CoV-2 spike protein as an example. PloS One 16:e0257886.
  • Ren X, Wang N, Zhou Y, et al. (2021). An injectable hydrogel using an immunomodulating gelator for amplified tumor immunotherapy by blocking the arginase pathway. Acta Biomater 124:179–90.
  • Rosenberg SA, Yang JC, Restifo NP. (2004). Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–15.
  • Shang P, Gao R, Zhu Y, et al. (2021). VEGFR2-targeted antibody fused with IFN α mut regulates the tumor microenvironment of colorectal cancer and exhibits potent anti-tumor and anti-metastasis activity. Acta Pharm Sin B 11:420–33.
  • Sun Q, Zhou Z, Qiu N, Shen Y. (2017). Rational design of cancer nanomedicine: nanoproperty integration and synchronization. Adv Mater 29:1606628.
  • Tang F, Li L, Chen D. (2012). Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24:1504–34.
  • Wang J, Byrne JD, Napier ME, DeSimone JM. (2011). More effective nanomedicines through particle design. Small 7:1919–31.
  • Wang J, Chen HJ, Hang T, et al. (2018). Physical activation of innate immunity by spiky particles. Nat Nanotechnol 13:1078–86.
  • Wang L, He Y, He T, et al. (2020). Lymph node-targeted immune-activation mediated by imiquimod-loaded mesoporous polydopamine based-nanocarriers. Biomaterials 255:120208.
  • Wang Y, Ke J, Guo X, et al. (2022). Chiral mesoporous silica nano-screws as an efficient biomimetic oral drug delivery platform through multiple topological mechanisms. Acta Pharm Sin B 12:1432–46.
  • Wang X, Li X, Ito A, et al. (2022). Synergistic anti-tumor efficacy of a hollow mesoporous silica-based cancer vaccine and an immune checkpoint inhibitor at the local site. Acta Biomater 145:235–45.
  • Wang Y, Wang J, Gou K, et al. (2021). pH/H(2)O(2) dual-responsive chiral mesoporous silica nanorods coated with a biocompatible active targeting ligand for cancer therapy. ACS Appl Mater Interfaces 13:35397–409.
  • Wang W, Wang P, Tang X, et al. (2017). Facile synthesis of uniform virus-like mesoporous silica nanoparticles for enhanced cellular internalization. ACS Cent Sci 3:839–46.
  • Xia T, Kovochich M, Liong M, et al. (2009). Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3:3273–86.
  • Xie X, Feng Y, Zhang H, et al. (2023). Corrigendum to "Remodeling tumor immunosuppressive microenvironment via a novel bioactive nanovaccines potentiates the efficacy of cancer immunotherapy" [Bioactive Mater. 16 107–119]. Bioact Mater 21:239–40.
  • Zhang YN, Lazarovits J, Poon W, et al. (2019). Nanoparticle size influences antigen retention and presentation in lymph node follicles for humoral immunity. Nano Lett 19:7226–35.
  • Zhang M, Qin X, Zhao Z, et al. (2022). A self-amplifying nanodrug to manipulate the Janus-faced nature of ferroptosis for tumor therapy. Nanoscale Horiz 7:198–210.
  • Zhang L, Wu S, Qin Y, et al. (2019). Targeted codelivery of an antigen and dual agonists by hybrid nanoparticles for enhanced cancer immunotherapy. Nano Lett 19:4237–49.
  • Zhao L, Song X, Ouyang X, et al. (2021). Bioinspired virus-like Fe(3)O(4)/Au@C nanovector for programmable drug delivery via hierarchical targeting. ACS Appl Mater Interfaces 13:49631–41.
  • Zhou S, Shang Q, Wang N, et al. (2020). Rational design of a minimalist nanoplatform to maximize immunotherapeutic efficacy: four birds with one stone. J Control Release 328:617–30.