4,347
Views
20
CrossRef citations to date
0
Altmetric
Research Article

A detailed insight of the tumor targeting using nanocarrier drug delivery system

, , ORCID Icon, , , , & show all
Article: 2183815 | Received 08 Dec 2022, Accepted 06 Feb 2023, Published online: 03 Mar 2023

References

  • Adiseshaiah PP, Crist RM, Hook SS, McNeil SE. (2016). Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat Rev Clin Oncol 13:1–20.
  • Agarwal R, Jurney P, Raythatha M, et al. (2015). Effect of shape, size, and aspect ratio on nanoparticle penetration and distribution inside solid tissues using 3D spheroid models. Adv Healthcare Mater 4:2269–80.
  • Aggarwal A, Ginsburg O, Fojo T. (2014). Cancer economics, policy and politics: what informs the debate? Perspectives from the EU, Canada and US. J Cancer Policy 2:1–11.
  • Ahmad A, Khan F, Mishra RK, Khan R. (2019). Precision cancer nanotherapy: evolving role of multifunctional nanoparticles for cancer active targeting. J Med Chem 62:10475–96.
  • Allison RR, Bagnato VS, Sibata CH. (2010). Future of oncologic photodynamic therapy. Future Oncol 6:929–40.
  • Alphandery E, Grand-Dewyse P, Lefèvre R, et al. (2015). Cancer therapy using nanoformulated substances: scientific, regulatory and financial aspects. Expert Rev. Anticancer Ther 15:1233–55.
  • Amir KM, Khan Z, Ahmad I, et al. (2022). New [Pt (S2CNR2) Cl (PAr3)] complexes as anticancer agents. Inorg Chem Commun 136:109142.
  • Amoabediny G, Haghiralsadat F, Naderinezhad S, et al. (2018). Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: a comprehensive review. Int J Polym Mater 67:383–400.
  • Anarjan FS. (2019). Active targeting drug delivery nanocarriers: ligands. Nano-Struct Nano-Objects 19:100370.
  • Anselmo AC, Mitragotri S. (2016). Nanoparticles in the clinic. Bioeng. Transl. Med 1:10–29.
  • Anselmo AC, Mitragotri S. (2019). Nanoparticles in the clinic: an update. Bioeng Transl Med 4:e10143.
  • Anselmo AC, Mitragotri S. (2019). Nanoparticles in the clinic: an update. Bioeng Trans Med 4:10143–59.
  • Aravind A, Varghese SH, Veeranarayanan S, et al. (2012). Aptamer-labeled PLGA nanoparticles for targeting cancer cells. Cancer Nano 3:1–12.
  • Bartczak D, Muskens OL, Nitti S, et al. (2012). Interactions of human endothelial cells with gold nanoparticles of different morphologies. Small 8:122–30.
  • Barua S, Yoo J-W, Kolhar P, et al. (2013). Particle shape enhances specificity of antibody-displaying nanoparticles. Proc Natl Acad Sci U S A 110:3270–5.
  • Beljanski V, Hiscott J. (2012). The use of oncolytic viruses to overcome lung cancer drug resistance. Curr Opin Virol 2:629–35.
  • Bhakta GD, Saeed ME, Greten HJ, Efferth T. (2015). Dis-organizing centrosomal clusters: specific cancer therapy for a generic spread? Curr Med Chem 22:685–94.
  • Bilynsky C, Millot N, Papa AL. (2022). Radiation nanosensitizers in cancer therapy—from preclinical discoveries to the outcomes of early clinical trials. Bioeng Trans Med 7:e10256.
  • Boisselier E, Astruc D. (2009). Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759.
  • Bosetti C, Rosato V, Li D, et al. (2014). Diabetes, antidiabetic medications, and pancreatic cancer risk: an analysis from the international pancreatic cancer case-control consortium. Ann Oncol 25:2065–72.
  • Bray F, Ferlay J, Soerjomataram I, et al. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 68:394–424.
  • Bruckman MA, Randolph LN, VanMeter A, et al. (2014). Biodistribution, pharmacokinetics, and blood compatibility of native and PEGylated tobacco mosaic virus nano-rods and-spheres in mice. Virology 449:163–73.
  • Champion JA, Mitragotri S. (2009). Shape induced inhibition of phagocytosis of polymer particles. Pharm Res 26:244–9.
  • Chan MH, Lin HM. (2015). Preparation and identification of multifunctional mesoporous silica nanoparticles for in vitro and in vivo dual-mode imaging, theranostics, and targeted tracking. Biomaterials 46:149–58.
  • Chaudhry M, Lyon P, Coussios C, Carlisle R. (2022). Thermosensitive liposomes: a promising step toward localised chemotherapy. Expert Opin Drug Deliv 19:899–912.
  • Chen CH, Wu YJ, Chen JJ. (2015a). Gold nanotheranostics: photothermal therapy and imaging of Mucin 7 conjugated antibody nanoparticles for urothelial cancer. Biomed Res Int 2015:813632.
  • Chen Q, Wang X, Wang C, et al. (2015b). Drug-induced self-assembly of modified albumins as nano-theranostics for tumor-targeted combination therapy. ACS Nano 9:5223–33.
  • Chilakamarthi U, Giribabu L. (2017). Photodynamic therapy: past, present and future. Chem Rec 17:775–802.
  • Chowdhury M, Schumann C, Bhakta-Guha D, Guha G. (2016). Cancer nanotheranostics: strategies, promises and impediments. Biomed Pharmacother 84:291–304.
  • Christian DA, Cai S, Garbuzenko OB, et al. (2009). Flexible filaments for in vivo imaging and delivery: persistent circulation of filomicelles opens the dosage window for sustained tumor shrinkage. Mol Pharmaceutics 6:1343–52.
  • Chuah LH, Billa N, Roberts CJ, et al. (2013). Curcumin-containing chitosan nanoparticles as a potential mucoadhesive delivery system to the colon. Pharm Dev Technol 18:591–9.
  • Cisterna BA, Kamaly N, Choi WI, et al. (2016). Targeted nanoparticles for colorectal cancer. Nanomedicine 11:2443–56.
  • Conroy T, Hammel P, Hebbar M, et al. (2018). FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N Engl J Med 379:2395–406.
  • Danhier F, Feron O, Préat V. (2010). To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–46.
  • Deryugina EI, Quigley JP. (2010). Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions. Biochim Biophys Acta Mol Cell Res 1803:103–20.
  • Deshpande PP, Biswas S, Torchilin VP. (2013). Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond) 8:1509–28.
  • Din F, Choi JY, Kim DW, et al. (2017a). Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration. Drug Deliv 24:502–10.
  • Din F, Kim DW, Choi JY et al. (2017b). Irinotecan-loaded double-reversible thermogel with improved antitumor efficacy without initial burst effect and toxicity for intramuscular administration. Acta Biomater 54:239–48.
  • Dinndorf PA, Gootenberg J, Cohen MH, et al. (2007). FDA drug approval summary: pegaspargase (oncaspar) for the first-line treatment of children with acute lymphoblastic leukemia (ALL). Oncologist 12:991–8.
  • Dixit S, Miller K, Zhu Y, et al. (2015). Dual receptor-targeted theranostic nanoparticles for localized delivery and activation of photodynamic therapy drug in glioblastomas. Mol Pharm 12:3250–60.
  • Doughty A, Hoover A, Layton E, et al. (2019). Nanomaterial applications in photothermal therapy for cancer. Materials 12:779.
  • Douglas T, Young M. (2006). Viruses: making friends with old foes. Science 312:873–5.
  • Draz MS, Fang BA, Zhang P, et al. (2014). Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics 4:872–92.
  • Ediriwickrema A, Saltzman WM. (2015). Nanotherapy for cancer: targeting and multifunctionality in the future of cancer therapies. ACS Biomater Sci Eng 1:64–78.
  • Egusquiaguirre SP, Igartua M, Hernández RM, Pedraz JL. (2012). Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin Transl Oncol 14:83–93.
  • Farshbaf M, Valizadeh H, Panahi Y, et al. (2022). The impact of protein corona on the biological behavior of targeting nanomedicines. Int J Pharm 614:121458.
  • Fulbright LE, Ellermann M, Arthur JC. (2017). The microbiome and the hallmarks of cancer. PLoS Pathog 13:e1006480.
  • Gabizon A, Martin F. (1997). Polyethylene glycol-coated (pegylated) liposomal doxorubicin: rationale for use in solid tumours. Drugs 54:15–21.
  • Gan CW, Feng S-S. 2014. Transferrin-conjugated nanoparticles of poly (lactide)-D-α-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood–brain barrier. Chem Eng J 31:826–49.
  • Gao G, Sun X, Liang G. (2021). Nanoagent-promoted mild-temperature photothermal therapy for cancer treatment. Adv Funct Mater 31:2100738.
  • Gao X, Cui Y, Levenson RM, et al. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–76.
  • Geng Y, Dalhaimer P, Cai S, et al. (2007). Shape effects of filaments versus spherical particles in flow and drug delivery. Nature Nanotech 2:249–55.
  • Gillen S, Schuster T, Meyer zum Büschenfelde C, et al. (2010). Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med 7:e1000267.
  • Goddard ZR, Marín MJ, Russell DA, Searcey M. (2020). Active targeting of gold nanoparticles as cancer therapeutics. Chem Soc Rev 49:8774–89.
  • Greish K. (2007). Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target 15:457–64.
  • Grodzinski P, Kircher M, Goldberg M, Gabizon A. 2019. Integrating nanotechnology into cancer care. ACS Nano 13(7):7370–76.
  • Guo J, Schlich M, Cryan JF, O’Driscoll CM. (2017). Targeted drug delivery via folate receptors for the treatment of brain cancer: can the promise deliver? J Pharm Sci 106:3413–20.
  • Haider N, Fatima S, Taha M, et al. (2020). Nanomedicines in diagnosis and treatment of cancer: an update. Curr Pharm Des 26:1216–31.
  • He H, Liu L, Morin EE, et al. (2019). Survey of clinical translation of cancer nanomedicines—lessons learned from successes and failures. Acc Chem Res 52:2445–61.
  • He Q, Ma M, Wei C, Shi J. (2012). Mesoporous carbon@silicon-silica nanotheranostics for synchronous delivery of insoluble drugs and luminescence imaging. Biomaterials 33:4392–402.
  • He Z, Zhang Y, Feng N. (2020). Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: a review. Mater Sci Eng C 106:110298.
  • Hirsjarvi S, Passirani C, Benoit J-P. (2011). Passive and active tumour targeting with nanocarriers. CDDT 8:188–96.
  • Howell M, Valle JW. (2015). The role of adjuvant chemotherapy and radiotherapy for cholangiocarcinoma. Best Pract Res Clin Gastroenterol 29:333–43.
  • Hruban R. 2010. Ductal adenocarcinoma of the pancreas. WHO Classification of Digestive Tumors, 281–90.
  • Hruban RH, Canto MI, Goggins M, et al. (2010). Update on familial pancreatic cancer. Adv Surg 44:293–311.
  • Hu C, He X, Chen Y, et al. (2021). Metformin mediated PD-L1 downregulation in combination with photodynamic-immunotherapy for treatment of breast cancer. Adv Funct Mater 31:2007149.
  • Hu C, Lei T, Wang Y, et al. (2020). Phagocyte-membrane-coated and laser-responsive nanoparticles control primary and metastatic cancer by inducing anti-tumor immunity. Biomaterials 255:120159.
  • Hunt NJ, McCourt PA, Kuncic Z, et al. (2022). Opportunities and challenges for nanotherapeutics for the aging population. Front Nanotechnol 4:1.
  • Imran M, Das KR, Naik MM. (2019). Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: an emerging health threat. Chemosphere 215:846–57.
  • Iodice S, Gandini S, Maisonneuve P, Lowenfels AB. (2008). Tobacco and the risk of pancreatic cancer: a review and meta-analysis. Langenbecks Arch Surg 393:535–45.
  • Ishtiaq S, Shah KU, Ur-Rehman T, Ud-Din F. 2020. Gold nanorods: new generation drug delivery platform. Metal nanoparticles for drug delivery and diagnostic applications, 59–84.
  • Jamshaid H, Ud Din F. 2021. Emerging lipid-based nanomaterials for cancer theranostics. Cancer nanotheranostics. Berlin: Springer, 125–59.
  • Jazieh AR, Da’ar OB, Alkaiyat M, et al. (2019). Cancer incidence trends from 1999 to 2015 and contributions of various cancer types to the overall burden: projections to 2030 and extrapolation of economic burden in saudi arabia. CMAR 11:9665–74.
  • Jia W, Liu R, Wang Y, et al. (2022). Dual-responsive nanoparticles with transformable shape and reversible charge for amplified chemo-photodynamic therapy of breast cancer. Acta Pharm Sin B 12:3354–66.
  • Jin CS, Cui L, Wang F, et al. (2014). Targeting-triggered porphysome nanostructure disruption for activatable photodynamic therapy. Adv Healthc Mater 3:1240–9.
  • Kamaly N, Fredman G, Fojas JJR, et al. (2016). Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis. ACS Nano 10:5280–92.
  • Kessentini S, Barchiesi D. (2012). Quantitative comparison of optimized nanorods, nanoshells and hollow nanospheres for photothermal therapy. Biomed Opt Express 3:590–604.
  • Khan MW, Zou C, Hassan S, et al. (2022). Cisplatin and oleanolic acid Co-loaded pH-sensitive CaCO3 nanoparticles for synergistic chemotherapy. RSC Adv 12:14808–18.
  • Kirtane AR, Kalscheuer SM, Panyam J. (2013). Exploiting nanotechnology to overcome tumor drug resistance: challenges and opportunities. Adv Drug Deliv Rev 65:1731–47.
  • Kluza E, Jacobs I, Hectors SJ, et al. (2012). Dual-targeting of αvβ3 and galectin-1 improves the specificity of paramagnetic/fluorescent liposomes to tumor endothelium in vivo. J Control Release 158:207–14.
  • Lammers T, Kiessling F, Hennink WE, Storm G. (2010). Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharmaceutics 7:1899–912.
  • Lawrance IC, Sherrington C, Murray K. (2006). Poor correlation between clinical impression, the small colonic polyp and their neoplastic risk. J Gastroenterol Hepatol 21:563–8.
  • Lee SY, Kang MS, Jeong WY, et al. (2020). Hyaluronic acid-based theranostic nanomedicines for targeted cancer therapy. Cancers 12:940.
  • Li R, Wu R, Zhao L, et al. (2011). Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells. Carbon 49:1797–805.
  • Li Y-J, Wu J-Y, Wang J-M, Xiang D-X. (2020). Emerging nanomedicine-based strategies for preventing metastasis of pancreatic cancer. J Control Release 320:105–11.
  • Lin C, Tong F, Liu R, et al. (2020). GSH-responsive SN38 dimer-loaded shape-transformable nanoparticles with iRGD for enhancing chemo-photodynamic therapy. Acta Pharm Sin B 10:2348–61.
  • Lin WJ, Lee W-C, Shieh M-J. (2017). Hyaluronic acid conjugated micelles possessing CD44 targeting potential for gene delivery. Carbohydr Polym 155:101–8.
  • Liu D, Auguste DT. (2015). Cancer targeted therapeutics: from molecules to drug delivery vehicles. J Control Release 219:632–43.
  • Liu GX, Fang GQ, Xu W. (2014). Dual targeting biomimetic liposomes for paclitaxel/DNA combination cancer treatment. IJMS 15:15287–303.
  • Liu R, An Y, Jia W, et al. (2020). Macrophage-mimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer. J Control Release 321:589–601.
  • Liu R, Hu C, Yang Y, et al. (2019). Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharm Sin B 9:410–20.
  • Liu TW, MacDonald TD, Jin CS, et al. (2013). Inherently multimodal nanoparticle-driven tracking and real-time delineation of orthotopic prostate tumors and micrometastases. ACS Nano 7:4221–32.
  • Liu X, Madhankumar A, Slagle-Webb B, et al. (2011). Heavy chain ferritin siRNA delivered by cationic liposomes increases sensitivity of cancer cells to chemotherapeutic agents. Cancer Res 71:2240–9.
  • Liu Z, Cai W, He L, et al. (2007). In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotech 2:47–52.
  • Lu W, Zhang G, Zhang R, et al. (2010). Tumor site–specific silencing of NF-κB p65 by targeted hollow gold nanosphere–mediated photothermal transfectionsilencing of NF-κB p65 by photothermal transfection. Cancer Res 70:3177–88.
  • Lu YJ, Lin PY, Huang PH, et al. (2018). Magnetic graphene oxide for dual targeted delivery of doxorubicin and photothermal therapy. Nanomaterials (Basel) 8:193.
  • Ma Y, Nolte RJ, Cornelissen JJ. (2012). Virus-based nanocarriers for drug delivery. Adv Drug Deliv Rev 64:811–25.
  • Madamsetty VS, Mukherjee A, Mukherjee S. (2019). Recent trends of the bio-inspired nanoparticles in cancer theranostics. Front Pharmacol 10:1264.
  • Maji R, Dey NS, Satapathy BS, et al. (2014). Preparation and characterization of Tamoxifen citrate loaded nanoparticles for breast cancer therapy. Int J Nanomed 9:3107.
  • Mamnoon B, Loganathan J, Confeld MI, et al. (2021). Targeted polymeric nanoparticles for drug delivery to hypoxic, triple-negative breast tumors. ACS Appl Bio Mater 4:1450–60.
  • Manandhar S, Sjöholm E, Bobacka J, et al. (2021). Polymer-drug conjugates as nanotheranostic agents. JNT 2:63–81.
  • Martinelli C, Pucci C, Ciofani G. (2019). Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL Bioeng 3:011502.
  • Mattheolabakis G, Ling D, Ahmad G, Amiji M. (2016). Enhanced anti-tumor efficacy of lipid-modified platinum derivatives in combination with survivin silencing siRNA in resistant non-small cell lung cancer. Pharm Res 33:2943–53.
  • Montaseri H, Kruger CA, Abrahamse H. (2020). Organic nanoparticle based active targeting for photodynamic therapy treatment of breast cancer cells. Oncotarget 11:2120–36.
  • Moses C, Garcia-Bloj B, Harvey AR, Blancafort P. (2018). Hallmarks of cancer: the CRISPR generation. Eur J Cancer 93:10–8.
  • Muhammad F, Guo M, Wang A, et al. (2014). Responsive delivery of drug cocktail via mesoporous silica nanolamps. J Colloid Interface Sci 434:1–8.
  • Muhanna N, Jin CS, Huynh E, et al. (2015). Phototheranostic porphyrin nanoparticles enable visualization and targeted treatment of head and neck cancer in clinically relevant models [Research Paper]. Theranostics 5:1428–43.
  • Mukherjee A, Paul M, Mukherjee S. (2019). Recent progress in the theranostics application of nanomedicine in lung cancer. Cancers 11:597.
  • Mukherjee S, Chowdhury D, Kotcherlakota R, et al. (2014). Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics 4:316–35.
  • Mundekkad D, Cho WC. (2022). Nanoparticles in clinical translation for cancer therapy. IJMS 23:1685.
  • Muthoosamy K, Abubakar IB, Bai RG, et al. (2016). Exceedingly higher co-loading of curcumin and paclitaxel onto polymer-functionalized reduced graphene oxide for highly potent synergistic anticancer treatment. Sci Rep 6:1–14.
  • Ng KK, Lovell JF, Zheng G. (2011). Lipoprotein-inspired nanoparticles for cancer theranostics. Acc Chem Res 44:1105–13.
  • Nicolas J, Mura S, Brambilla D, et al. (2013). Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 42:1147–235.
  • Nowotnik DP, Cvitkovic E. (2009). ProLindac™(AP5346): a review of the development of an HPMA DACH platinum polymer therapeutic. Adv Drug Deliv Rev 61:1214–9.
  • Obraztsov AN, Obraztsova EA, Tyurnina AV, Zolotukhin AA. (2007). Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 45:2017–21.
  • Ogawa K, Kobuke Y. (2008). Recent advances in two-photon photodynamic therapy. ACAMC 8:269–79.
  • Oishi M, Nakaogami J, Ishii T, Nagasaki Y. (2006). Smart PEGylated gold nanoparticles for the cytoplasmic delivery of siRNA to induce enhanced gene silencing. Chem Lett 35:1046–7.
  • Orang AV, Petersen J, McKinnon RA, Michael MZ. (2019). Micromanaging aerobic respiration and glycolysis in cancer cells. Mol Metab 23:98–126.
  • Pang Z, Gao H, Yu Y, et al. (2011). Enhanced intracellular delivery and chemotherapy for glioma rats by transferrin-conjugated biodegradable polymersomes loaded with doxorubicin. Bioconjugate Chem 22:1171–80.
  • Patra HK, U, Khaliq N, Romu T, et al. (2014). MRI-visual order-disorder micellar nanostructures for smart cancer theranostics. Adv Healthcare Mater 3:526–35.
  • Pattenden LK, Middelberg AP, Niebert M, Lipin DI. (2005). Towards the preparative and large-scale precision manufacture of virus-like particles. Trends Biotechnol 23:523–9.
  • Peiris PM, Toy R, Doolittle E, et al. (2012). Imaging metastasis using an integrin-targeting chain-shaped nanoparticle. ACS Nano 6:8783–95.
  • Peng G, Tisch U, Adams O, et al. (2009). Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nature Nanotech 4:669–73.
  • Perey L, Hayes DF, Maimonis P, et al. (1992). Tumor selective reactivity of a monoclonal antibody prepared against a recombinant peptide derived from the DF3 human breast carcinoma-associated antigen. Cancer Res 52:2563–8.
  • Pérez-Herrero E, Fernández-Medarde A. (2015). Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79.
  • Prokopiou E, Ryder S, Walsh J. (2013). Tumour vasculature targeting agents in hybrid/conjugate drugs. Angiogenesis 16:503–24.
  • Qiao Y, Wan J, Zhou L, et al. (2019). Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdiscip Rev Nanomed 11:e1527.
  • Raimondi S, Lowenfels AB, Morselli-Labate AM, et al. (2010). Pancreatic cancer in chronic pancreatitis; aetiology, incidence, and early detection. Best Pract Res Clin Gastroenterol 24:349–58.
  • Raja HN, Imran B, Din FU. 2022. Trigger-sensitive nanoparticle for drug delivery. Drug delivery using nanomaterials. Boca Raton, FL: CRC Press, 155–80.
  • Rajora MA, Ding L, Valic M, et al. (2017). Tailored theranostic apolipoprotein E3 porphyrin-lipid nanoparticles target glioblastoma. Chem Sci 8:5371–84.
  • Rastinehad AR, Anastos H, Wajswol E, et al. (2019). Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Natl Acad Sci U S A 116:18590–6.
  • Ren J, Shen S, Wang D, et al. (2012). The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials 33:3324–33.
  • Roa WH, Azarmi S, Al-Hallak MK, et al. (2011). Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. J Control Release 150:49–55.
  • Robertson KL, Soto CM, Archer MJ, et al. (2011). Engineered T4 viral nanoparticles for cellular imaging and flow cytometry. Bioconjugate Chem 22:595–604.
  • Ruan S, Hu C, Tang X, et al. (2016). Increased gold nanoparticle retention in brain tumors by in situ enzyme-induced aggregation. ACS Nano 10:10086–98.
  • Ruan S, Rou X, Lin Q, et al. (2019). Aggregable nanoparticles-enabled chemotherapy and autophagy inhibition combined with anti-PD-L1 antibody for improved glioma treatment. Nano Lett 19:8318–32.
  • Sabir F, Asad MI, Qindeel M, et al. (2019). Polymeric nanogels as versatile nanoplatforms for biomedical applications. J Nanomater 2019:1–16.
  • Sahoo AK, Banerjee S, Ghosh SS, Chattopadhyay A. (2014). Simultaneous RGB emitting Au nanoclusters in chitosan nanoparticles for anticancer gene theranostics. ACS Appl Mater Interfaces 6:712–24.
  • Sahu NK, Singh NS, Pradhan L, Bahadur D. (2014). Ce3+ sensitized GdPO4:Tb3+ with iron oxide nanoparticles: a potential biphasic system for cancer theranostics. Dalton Trans 43:11728–38.
  • Schmitt NC, Page BR. (2018). Chemoradiation-induced hearing loss remains a major concern for head and neck cancer patients. Int J Audiol 57:S48–S53.
  • Shahin M, Ahmed S, Kaur K, Lavasanifar A. (2011). Decoration of polymeric micelles with cancer-specific peptide ligands for active targeting of paclitaxel. Biomaterials 32:5123–33.
  • Shahin M, Lavasanifar A. (2010). Novel self-associating poly (ethylene oxide)-b-poly (ɛ-caprolactone) based drug conjugates and nano-containers for paclitaxel delivery. Int J Pharm 389:213–22.
  • Shahin M, Soudy R, Aliabadi HM, et al. (2013). Engineered breast tumor targeting peptide ligand modified liposomal doxorubicin and the effect of peptide density on anticancer activity. Biomaterials 34:4089–97.
  • Shahzad K, Mushtaq S, Rizwan M, et al. (2021). Field-controlled magnetoelectric core-shell CoFe2O4@ BaTiO3 nanoparticles as effective drug carriers and drug release in vitro. Mater Sci Eng C 119:111444.
  • Shi H, Ye X, He X, et al. (2014). Au@Ag/Au nanoparticles assembled with activatable aptamer probes as smart “nano-doctors” for image-guided cancer thermotherapy. Nanoscale 6:8754.
  • Shi X, Gong H, Li Y, et al. (2013). Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials 34:4786–93.
  • Sibgha B, Maryam B, AM, Yousaf, et al. 2021. Emerging nanomaterials for cancer therapy. In: Nanotherapeutic strategies and new pharmaceuticals (Part 1). Singapore: Bentham Science, 104–39.
  • Siegel RL, Miller KD, Jemal A. (2019). Cancer statistics. CA: Cancer J Clin 69:7–34.
  • Singh A, Sahoo SK. (2014). Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discov Today 19:474–81.
  • Singh P, Prasuhn D, Yeh RM, et al. (2007). Bio-distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo. J Control Release 120:41–50.
  • Sohail S, Fakhar DU. 2021. Nanotheranostics: the future remedy of neurological disorders. Cancer nanotheranostics. Switzerland: Springer, 117–54.
  • Song Z, Lin Y, Zhang X, et al. (2017). Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects. IJN 12:1941–58.
  • Sun Z, Yan X, Liu Y, et al. (2017). Application of dual targeting drug delivery system for the improvement of anti-glioma efficacy of doxorubicin. Oncotarget 8:58823–34.
  • Tak YK, Pal S, Naoghare PK, et al. (2015). Shape-dependent skin penetration of silver nanoparticles: does it really matter? Sci Rep 5:1–11.
  • Tang W-L, Tang W-H, Li S-D. (2018). Cancer theranostic applications of lipid-based nanoparticles. Drug Discov 23:1159–66.
  • Tewari D, Rawat P, Singh PK. (2019). Adverse drug reactions of anticancer drugs derived from natural sources. Food Chem Toxicol 123:522–35.
  • Thakor AS, Gambhir SS. (2013). Nanooncology: the future of cancer diagnosis and therapy. CA A Cancer J Clin 63:395–418.
  • Tolcher AW, Mayer LD. (2018). Improving combination cancer therapy: the CombiPlex® development platform. Future Oncol 14:1317–32.
  • Torchilin V. (2011). Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63:131–5.
  • Torre LA, Bray F, Siegel RL, et al. (2015). Global cancer statistics, 2012. CA Cancer J Clin 65:87–108.
  • Toy R, Peiris PM, Ghaghada KB, Karathanasis E. (2014). Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine 9:121–34.
  • Truffi M, Fiandra L, Sorrentino L, et al. (2016). Ferritin nanocages: a biological platform for drug delivery, imaging and theranostics in cancer. Pharmacol Res 107:57–65.
  • ud Din F, Aman W, Ullah I, et al. (2017). Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. IJN 12:7291–309.
  • Verschraegen CF, Gilbert BE, Loyer E, et al. (2004). Clinical evaluation of the delivery and safety of aerosolized liposomal 9-nitro-20 (s)-camptothecin in patients with advanced pulmonary malignancies. Clin Cancer Investig J 10:2319–26.
  • Wan G, Chen B, Li L, et al. (2018). Nanoscaled red blood cells facilitate breast cancer treatment by combining photothermal/photodynamic therapy and chemotherapy. Biomaterials 155:25–40.
  • Wang CF, Sarparanta MP, Mäkilä EM, et al. (2015). Multifunctional porous silicon nanoparticles for cancer theranostics. Biomaterials 48:108–18.
  • Wang H, Ding T, Guan J, et al. (2020). Interrogation of folic acid-functionalized nanomedicines: the regulatory roles of plasma proteins reexamined. ACS Nano 14:14779–89.
  • Wang LS, Chuang MC, Ho JA. (2012). Nanotheranostics–a review of recent publications. Int J Nanomed 7:4679–95.
  • Wang Z, Huang P, Jacobson O, et al. (2016). Biomineralization-inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics. ACS Nano 10:3453–60.
  • Wang Z, Qiao R, Tang N, et al. (2017). Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer. Biomaterials 127:25–35.
  • Weissig V, Pettinger TK, Murdock N. (2014). Nanopharmaceuticals (part 1): products on the market. Int J Nanomed 9:4357–73.
  • Werner ME, Cummings ND, Sethi M, et al. (2013). Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. Int J Radiat Oncol Biol Phys 86:463–8.
  • Wu F, Su H, Cai Y, et al. (2018). Porphyrin-implanted carbon nanodots for photoacoustic imaging and in vivo breast cancer ablation. ACS Appl Bio Mater 1:110–7.
  • Wu W, Zheng Y, Wang R, et al. (2012). Antitumor activity of folate-targeted, paclitaxelloaded polymeric micelles on a human esophageal EC9706 cancer cell line. Int J Nanomed 7:3487.
  • Xiao W, Gao H. (2018). The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery system. Int J Pharm 552:328–39.
  • Xiao W, Wang Y, Zhang H, et al. (2021). The protein corona hampers the transcytosis of transferrin-modified nanoparticles through blood–brain barrier and attenuates their targeting ability to brain tumor. Biomaterials 274:120888.
  • Xie J, Liu G, Eden HS, et al. (2011). Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc Chem Res 44:883–92.
  • Xie R, Ruan Shaobo Liu J, Qin L, et al. (2021). Furin-instructed aggregated gold nanoparticles for re-educating tumor associated macrophages and overcoming breast cancer chemoresistance. Biomaterials 275:120891.
  • Xing R, Mustapha O, Ali T, et al. 2021. Development, characterization, and evaluation of SLN-loaded thermoresponsive hydrogel system of topotecan as biological macromolecule for colorectal delivery. Biomed Res Int 2021:9968602.
  • Xiong XB, Uludağ H, Lavasanifar A. (2010). Virus-mimetic polymeric micelles for targeted siRNA delivery. Biomaterials 31:5886–93.
  • Xu Q, Liu Y, Su S, et al. (2012). Anti-tumor activity of paclitaxel through dual-targeting carrier of cyclic RGD and transferrin conjugated hyperbranched copolymer nanoparticles. Biomaterials 33:1627–39.
  • Xu W, Xu M, Xiao Y, et al. (2022). Changes in target ability of nanoparticles due to protein corona composition and disease state. Asian J Pharm 17:401–11.
  • Yang L, Tseng YT, Suo G, et al. (2015). Photothermal therapeutic response of cancer cells to aptamer-gold nanoparticle-hybridized graphene oxide under NIR illumination. ACS Appl Mater Inter 7:5097–106.
  • Yang T, Wang Y, Ke H, et al. (2016). Protein-nanoreactor-assisted synthesis of semiconductor nanocrystals for efficient cancer theranostics. Adv Mater 28:5923–30.
  • Yousaf A, Shahzad Y, ud Din F, et al. 2021. Polymeric nanofibers for wound dressing applications. In: Nanotherapeutic strategies and new pharmaceuticals (Part 2). Singapore: Bentham Science Publishers BV, 113–41.
  • Yu G, Ali Z, S, Khan A, et al. (2021). Preparation, pharmacokinetics, and antitumor potential of miltefosine-loaded nanostructured lipid carriers. IJN 16:3255–73.
  • Yu KM, Kim D, Lee IH, et al. (2011). Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7:2241–9.
  • Yu M, K, Park J, Jon S. (2012). Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2:3–44.
  • Yuan M, Qiu Y, Zhang L, et al. (2016). Targeted delivery of transferrin and TAT co-modified liposomes encapsulating both paclitaxel and doxorubicin for melanoma. Drug Deliv 23:1171–83.
  • Zeb A, Rana I, Choi HI, et al. (2020). Potential and applications of nanocarriers for efficient delivery of biopharmaceuticals. Pharmaceutics 12:1184.
  • Zein R, Sharrouf W, Selting K. (2020). Physical properties of nanoparticles that result in improved cancer targeting. J Oncol 13:5194780.
  • Zhang X, Xi Z, Machuki JOa, et al. (2019). Gold cube-in-cube based oxygen nanogenerator: a theranostic nanoplatform for modulating tumor microenvironment for precise chemo-phototherapy and multimodal imaging. ACS Nano 13:5306–25.
  • Zhang Y, Li M, Gao X, et al. (2019). Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol Pharm 12:1–13.
  • Zhou Q, Zhang L, Yang T, Wu H. (2018). Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. IJN 13:2921–42.
  • Zhou Y, Tong F, Gu W, et al. (2022). Co-delivery of photosensitizer and diclofenac through sequentially responsive bilirubin nanocarriers for combating hypoxic tumors. Acta Pharm Sin B 12:1416–31.