2,690
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Quantitative analysis of therapeutic proteins in biological fluids: recent advancement in analytical techniques

, , , , , , , & show all
Article: 2183816 | Received 02 Nov 2022, Accepted 06 Feb 2023, Published online: 06 Mar 2023

References

  • Aguilar M-I. (2004). HPLC of peptides and proteins. In: Aguilar M-I, ed. HPLC of peptides and proteins. Totowa (NJ): Springer, 1–20.
  • Ahlschwede KM, Amissah F, Deshmukh R. (2022). Evaluating the effect of cationic peptide K16ApoE against Staphylococcus epidermidis biofilms. J Pharm Investig 52:139–49.
  • Ahmed S, Ning J, Peng D, et al. (2020). Current advances in immunoassays for the detection of antibiotics residues: a review. Food Agric Immunol 31:268–90.
  • Aitken A, Learmonth MP. (2009). Protein determination by UV absorption. In: Walker JM, ed. The protein protocols handbook. Totowa (NJ): Springer, 3–6.
  • An WF. (2009). Fluorescence-based assays. In: Clemons PA, Tolliday NJ, Wagner BK, eds. Cell-based assays for high-throughput screening. Totowa (NJ): Springer, 97–107.
  • Anderson NL, Anderson NG, Haines LR, et al. (2004). Mass spectrometric quantitation of peptides, and proteins using Stable Isotope Standards, and Capture by Anti-Peptide Antibodies (SISCAPA). J Proteome Res 3:235–44.
  • Angel TE, Aryal UK, Hengel SM, et al. (2012). Mass spectrometry-based proteomics: existing capabilities and future directions. Chem Soc Rev 41:3912–28.
  • Antosiewicz JM, Shugar D. (2016). UV–Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications. Biophys Rev 8:163–77.
  • Awad H, Khamis MM, El-Aneed A. (2015). Mass spectrometry, review of the basics: ionization. Appl Spectrosc Rev 50:158–75.
  • Aydin S. (2015). A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 72:4–15.
  • Badawy ME, El-Nouby MA, Kimani PK, et al. (2022). A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. Anal Sci 38:1457–87.
  • Baghdady YZ, Schug KA. (2019a). Online comprehensive high pH reversed phase × low pH reversed phase approach for two-dimensional separations of intact proteins in top-down proteomics. Anal Chem 91:11085–91.
  • Baghdady YZ, Schug KA. (2019b). Qualitative evaluation of high pH mass spectrometry-compatible reversed phase liquid chromatography for altered selectivity in separations of intact proteins. J Chromatogr A 1599:108–14.
  • Banerjee S, Mazumdar S. (2012). Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int J Anal Chem 2012:1–40.
  • Bantan-Polak T, Kassai M, Grant KB. (2001). A comparison of fluorescamine and naphthalene-2, 3-dicarboxaldehyde fluorogenic reagents for microplate-based detection of amino acids. Anal Biochem 297:128–36.
  • Becker JO, Hoofnagle AN. (2012). Replacing immunoassays with tryptic digestion-peptide immunoaffinity enrichment and LC–MS/MS. Bioanalysis 4:281–90.
  • Belov ME, Prasad S, Prior DC, et al. (2011). Pulsed multiple reaction monitoring approach to enhancing sensitivity of a tandem quadrupole mass spectrometer. Anal Chem 83:2162–71.
  • Bladergroen MR, Van Der Burgt YE. (2015). Solid-phase extraction strategies to surmount body fluid sample complexity in high-throughput mass spectrometry-based proteomics. J Anal Methods Chem 2015:1–8.
  • Bobály B, Mikola V, Sipkó E, et al. (2015). Recovery of proteins affected by mobile phase trifluoroacetic acid concentration in reversed-phase chromatography. J Chromatogr Sci 53:1078–83.
  • Bolbach G. (2005). Matrix-assisted laser desorption/ionization analysis of non-covalent complexes: fundamentals and applications. CPD 11:2535–57.
  • Bolton JS, Chaudhury S, Dutta S, et al. (2020). Comparison of ELISA with electro-chemiluminescence technology for the qualitative and quantitative assessment of serological responses to vaccination. Malar J 19:1–13.
  • Borges EM. (2015). Silica, hybrid silica, hydride silica and non-silica stationary phases for liquid chromatography. J Chromatogr Sci 53:580–97.
  • Bourmaud A, Gallien S, Domon B. (2016). Parallel reaction monitoring using quadrupole‐Orbitrap mass spectrometer: principle and applications. Proteomics 16:2146–59.
  • Bradford MM. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–54.
  • Burdette CQ, Marcus RK. (2013). Solid phase extraction of proteins from buffer solutions employing capillary-channeled polymer (C-CP) fibers as the stationary phase. Analyst 138:1098–106.
  • Burkhart JM, Schumbrutzki C, Wortelkamp S, et al. (2012). Systematic and quantitative comparison of digest efficiency and specificity reveals the impact of trypsin quality on MS-based proteomics. J Proteomics 75:1454–62.
  • Carr D. (2002). The handbook of analysis and purification of peptides and proteins by reversed-phase HPLC. Hesperia (CA): Grace Vydac.
  • Carr D. (2016). A guide to the analysis and purification of proteins and peptides by reversed-phase HPLC. New York: Advanced Chromatography Technologies.
  • Chambers EE, Fountain KJ, Smith N, et al. (2014). Multidimensional LC-MS/MS enables simultaneous quantification of intact human insulin and five recombinant analogs in human plasma. Anal Chem 86:694–702.
  • Chang MS, Ji Q, Zhang J, et al. (2007). Historical review of sample preparation for chromatographic bioanalysis: pros and cons. Drug Dev Res 68:107–33.
  • Chang SK, Zhang Y. (2017). Protein analysis. In: Nielsen SS, ed. Food analysis. Cham, Switzerland: Springer, 315–31.
  • Chen B, Bartlett M. (2012). A one-step solid phase extraction method for bioanalysis of a phosphorothioate oligonucleotide and its 3′ n-1 metabolite from rat plasma by uHPLC–MS/MS. AAPS J 14:772–80.
  • Choudhary G, Wu S-L, Shieh P, et al. (2003). Multiple enzymatic digestion for enhanced sequence coverage of proteins in complex proteomic mixtures using capillary LC with ion trap MS/MS. J Proteome Res 2:59–67.
  • Ciccimaro E, Blair IA. (2010). Stable-isotope dilution LC–MS for quantitative biomarker analysis. Bioanalysis 2:311–41.
  • Cinquanta L, Fontana DE, Bizzaro N. (2017). Chemiluminescent immunoassay technology: what does it change in autoantibody detection? Autoimmun Highlights 8:1–8.
  • Cohen Freue GV, Borchers CH. (2012). Multiple reaction monitoring (MRM) principles and application to coronary artery disease. Circ Cardiovasc Genet 5:378.
  • Cohen L, Walt DR. (2019). Highly sensitive and multiplexed protein measurements. Chem Rev 119:293–321.
  • Compton PD, Zamdborg L, Thomas PM, et al. (2011). On the scalability and requirements of whole protein mass spectrometry. Anal Chem 83:6868–74.
  • Corran P. (1989). Reversed-phase chromatography of proteins. In: Oliver RWA, ed. HPLC of macromolecules: a practical approach. New York: Oxford, 127.
  • Crimmins DL, Mische SM, Denslow ND. (2000). Chemical cleavage of proteins in solution. Curr Protoc Protein Sci Chapter 11:11.4.1–11.
  • D’Atri V, Murisier A, Fekete S, et al. (2020). Current and future trends in reversed-phase liquid chromatography-mass spectrometry of therapeutic proteins. Trends Anal Chem 130:115962.
  • Darwish IA. (2006). Immunoassay methods and their applications in pharmaceutical analysis: basic methodology and recent advances. IJBS 2:217.
  • Donato P, Cacciola F, Tranchida PQ, et al. (2012). Mass spectrometry detection in comprehensive liquid chromatography: basic concepts, instrumental aspects, applications and trends. Mass Spectrom Rev 31:523–59.
  • Dong MW. (2006). Modern HPLC for practicing scientists. Hoboken (NJ): John Wiley & Sons.
  • Drijvers JM, Awan IM, Perugino CA, et al. (2017). The enzyme-linked immunosorbent assay: the application of ELISA in clinical research. In: Jalali M, Saldanha FY, Jalali M, eds. Basic science methods for clinical researchers. Massachusetts: Elsevier, 119–33.
  • Engvall E, Perlmann P. (1971). Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry 8:871–4.
  • Ewles M, Goodwin L. (2011). Bioanalytical approaches to analyzing peptides and proteins by LC–MS/MS. Bioanalysis 3:1379–97.
  • Faria M, Halquist MS. (2018). Internal standards for absolute quantification of large molecules (proteins) from biological matrices by LC-MS/MS. In: Stauffer MT, ed. Calibration and validation of analytical methods - a sampling of current approaches. London: IntechOpen, 61.
  • Fekete S, Bobály B, Nguyen JM, et al. (2021). Use of ultrashort columns for therapeutic protein separations. Part 1: theoretical considerations and proof of concept. Anal Chem 93:1277–84.
  • Fekete S, Rudaz S, Veuthey JL, et al. (2012). Impact of mobile phase temperature on recovery and stability of monoclonal antibodies using recent reversed‐phase stationary phases. J Sep Sci 35:3113–23.
  • Filgueiras MF, Borges EM. (2022). Quick and cheap colorimetric quantification of proteins using 96-well-plate images. J Chem Educ 99:1778–87.
  • Filip S, Vougas K, Zoidakis J, et al. (2015). Comparison of depletion strategies for the enrichment of low-abundance proteins in urine. PLoS One 10:e0133773.
  • Fu Y, Li W, Flarakos J. (2018). Highly selective and sensitive LC-MS/MS quantification of a therapeutic protein in human serum using immunoaffinity capture enrichment. J Chromatogr B 1100:83–90.
  • Fung EN, Bryan P, Kozhich A. (2016). Techniques for quantitative LC–MS/MS analysis of protein therapeutics: advances in enzyme digestion and immunocapture. Bioanalysis 8:847–56.
  • Furlong MT, Ouyang Z, Wu S, et al. (2012). A universal surrogate peptide to enable LC‐MS/MS bioanalysis of a diversity of human monoclonal antibody and human Fc‐fusion protein drug candidates in pre‐clinical animal studies. Biomed Chromatogr 26:1024–32.
  • Ghosh P, Vahedipour K, Lin M, et al. (2013). Computational fluid dynamic simulation of axial and radial flow membrane chromatography: mechanisms of non-ideality and validation of the zonal rate model. J Chromatogr A 1305:114–22.
  • Gillette MA, Carr SA. (2013). Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat Methods 10:28–34.
  • Glish GL, Vachet RW. (2003). The basics of mass spectrometry in the twenty-first century. Nat Rev Drug Discov 2:140–50.
  • Goldring J. (2012). Protein quantification methods to determine protein concentration prior to electrophoresis. Methods Mol Biol 869:29–35.
  • Grotefend S, Kaminski L, Wroblewitz S, et al. (2012). Protein quantitation using various modes of high performance liquid chromatography. J Pharm Biomed Anal 71:127–38.
  • Hagan A, Zuchner T. (2011). Lanthanide-based time-resolved luminescence immunoassays. Anal Bioanal Chem 400:2847–64.
  • Hayes M. (2020). Measuring protein content in food: an overview of methods. Foods 9:1340.
  • He F. (2011). Bradford protein assay. Bio-Protocol 1:e45.
  • He Q, Cui X, Shen D, et al. (2018). Development of a simple, rapid and high-throughput fluorescence polarization immunoassay for glycocholic acid in human urine. J Pharm Biomed Anal 158:431–7.
  • Hemmilä I. (1985). Fluoroimmunoassays and immunofluorometric assays. Clin Chem 31:359–70.
  • Hendrickson OD, Taranova NA, Zherdev AV, et al. (2020). Fluorescence polarization-based bioassays: new horizons. Sensors 20:7132.
  • Hong P, Koza S, Bouvier ES. (2012). A review size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J Liq Chromatogr Relat Technol 35:2923–50.
  • Hossain M, Kaleta DT, Robinson EW, et al. (2011). Enhanced sensitivity for selected reaction monitoring mass spectrometry-based targeted proteomics using a dual stage electrodynamic ion funnel interface. Mol Cell Proteom 10:S1–S9.
  • Hosseini S, Vázquez-Villegas P, Rito-Palomares M, et al. (2018). Enzyme-linked immunosorbent assay (ELISA): from A to Z. Singapore: Springer.
  • Hsieh Y, Rao Q. (2017). Immunoassays. In: Nielsen SS, ed. Food analysis. Cham, Switzerland: Springer, 487–502.
  • Issaq HJ, Fox SD, Mahadevan M, et al. (2003). Effect of experimental parameters on the HPLC separation of peptides and proteins. J Liq Chromatogr Relat Technol 26:2255–83.
  • Jenkins R, Duggan JX, Aubry A-F, et al. (2015). Recommendations for validation of LC-MS/MS bioanalytical methods for protein biotherapeutics. AAPS J 17:1–16.
  • Jeong S-H, Jang J-H, Cho H-Y, et al. (2020). A sensitive UPLC–ESI–MS/MS method for the quantification of cinnamic acid in vivo and in vitro: application to pharmacokinetic and protein binding study in human plasma. J Pharm Investig 50:159–72.
  • Jones LJ, Haugland RP, Singer VL. (2003). Development and characterization of the NanoOrange® protein quantitation assay: a fluorescence-based assay of proteins in solution. Biotechniques 34:850–61.
  • Jonsson A. (2001). Mass spectrometry for protein and peptide characterisation. CMLS, Cell Mol Life Sci 58:868–84.
  • Josic D, Kovac S. (2010). Reversed‐phase high performance liquid chromatography of proteins. Curr Protoc Protein Sci 61:8.7.1–22.
  • Kang L, Weng N, Jian W. (2020). LC–MS bioanalysis of intact proteins and peptides. Biomed Chromatogr 34:e4633.
  • Kanu AB, Dwivedi P, Tam M, et al. (2008). Ion mobility–mass spectrometry. J Mass Spectrom 43:1–22.
  • Karimi F, Hamidian Y, Behrouzifar F, et al. (2022). An applicable method for extraction of whole seeds protein and its determination through Bradford’s method. Food Chem Toxicol 164:113053.
  • Karpievitch YV, Polpitiya AD, Anderson GA, et al. (2010). Liquid chromatography mass spectrometry-based proteomics: biological and technological aspects. Ann Appl Stat 4:1797.
  • Kaza M, Karaźniewicz-Łada M, Kosicka K, et al. (2019). Bioanalytical method validation: new FDA guidance vs. EMA guideline. Better or worse? J Pharm Biomed Anal 165:381–5.
  • Kebarle P, Verkerk UH. (2009). Electrospray: from ions in solution to ions in the gas phase, what we know now. Mass Spectrom Rev 28:898–917.
  • Kelly RT, Tolmachev AV, Page JS, et al. (2010). The ion funnel: theory, implementations, and applications. Mass Spectrom Rev 29:294–312.
  • Kielkopf CL, Bauer W, Urbatsch IL. (2020). Methods for measuring the concentrations of proteins. Cold Spring Harb Protoc 2020:pdb.top102277.
  • Kim G-Y, Kim J-H, Lee T, et al. (2022a). In vitro and in vivo evaluations of a 3-month sustained-release microsphere depot formulation of leuprolide acetate. J Pharm Investig 52:129–38.
  • Kim NA, Heo B, Jeong SH. (2020). Rapid methodology for basal system selection of therapeutic proteins during the early stage biopharmaceutical development. J Pharm Investig 50:363–72.
  • Kim SH, Yoo HJ, Park EJ, et al. (2022b). Impact of buffer concentration on the thermal stability of immunoglobulin G. J Pharm Investig 52:739–47.
  • Kirkland J, Truszkowski F, Ricker R. (2002). Atypical silica-based column packings for high-performance liquid chromatography. J Chromatogr A 965:25–34.
  • Kisiala A, Kambhampati S, Stock NL, et al. (2019). Quantification of cytokinins using high-resolution accurate-mass orbitrap mass spectrometry and parallel reaction monitoring (PRM). Anal Chem 91:15049–56.
  • Klaassen T, Szwandt S, Kapron JT, et al. (2009). Validated quantitation method for a peptide in rat serum using liquid chromatography/high‐field asymmetric waveform ion mobility spectrometry. Rapid Commun Mass Spectrom 23:2301–6.
  • Knol WC, Pirok BW, Peters RA. (2021). Detection challenges in ­quantitative polymer analysis by liquid chromatography. J Sep Sci 44:63–87.
  • Knox JH, Scott HP. (1983). B and C terms in the Van Deemter equation for liquid chromatography. J Chromatogr A 282:297–313.
  • Kopaciewicz W, Rounds M, Fausnaugh J, et al. (1983). Retention model for high-performance ion-exchange chromatography. J Chromatogr A 266:3–21.
  • Kricka L, Park J. (2014). Assay principles in clinical pathology. In: Mcmanus LM, Mitchell R, eds. Pathobiology of human disease: a dynamic encyclopedia of disease mechanisms. Massachusetts: Elsevier, 3207–21.
  • Krohn RI. (2005). The colorimetric detection and quantitation of total protein. Curr Protoc Toxicol 23:A.3I.1–28.
  • Kromidas S. (2008). HPLC made to measure: a practical handbook for optimization. New Jersey: John Wiley & Sons.
  • Kumpalume P, Ghose S. (2003). Chromatography: the high-resolution technique for protein separation. In: Hatti-Kaul R, Mattiasson B, eds. Isolation and purification of proteins. Florida: CRC Press, 44–69.
  • Kusuma MB, Kashibhatta R, Jagtap SS, et al. (2021). A selective and sensitive UPLC–ESI-MS/MS method for quantification of pegylated interferon Alfa-2b in human serum using signature peptide-based quantitation. J Chromatogr B 1180:122883.
  • Law HC, Kong RP, Szeto SS, et al. (2015). A versatile reversed phase-strong cation exchange-reversed phase (RP–SCX–RP) multidimensional liquid chromatography platform for qualitative and quantitative shotgun proteomics. Analyst 140:1237–52.
  • Lazoura E, Maidonis I, Bayer E, et al. (1997). Conformational analysis of neuropeptide Y-[18–36] analogs in hydrophobic environments. Biophys J 72:238–46.
  • Le C, Kunacheva C, Stuckey DC. (2016). “Protein” measurement in biological wastewater treatment systems: a critical evaluation. Environ Sci Technol 50:3074–81.
  • Lee PY, Osman J, Low TY, et al. (2019). Plasma/serum proteomics: depletion strategies for reducing high-abundance proteins for biomarker discovery. Bioanalysis 11:1799–812.
  • Li F, Fast D, Michael S. (2011). Absolute quantitation of protein therapeutics in biological matrices by enzymatic digestion and LC–MS. Bioanalysis 3:2459–80.
  • Li W, Jian W, Fu Y. (2019). Basic sample preparation techniques in LC‐MS bioanalysis: protein precipitation, liquid–liquid extraction, and solid‐phase extraction. In: Li W, Jian W, Fu Y, eds. Sample preparation in LC‐MS bioanalysis. New Jersey: John Wiley & Sons, 1–30.
  • Li XS, Li S, Kellermann G. (2018). Simultaneous determination of three estrogens in human saliva without derivatization or liquid-liquid extraction for routine testing via miniaturized solid phase extraction with LC-MS/MS detection. Talanta 178:464–72.
  • Liebler DC, Zimmerman LJ. (2013). Targeted quantitation of proteins by mass spectrometry. Biochemistry 52:3797–806.
  • Lim DG, Lee JC, Kim DJ, et al. (2020). Effects of precipitation process on the biophysical properties of highly concentrated proteins. J Pharm Investig 50:493–503.
  • Locatelli M, Melucci D, Carlucci G, et al. (2012). Recent HPLC strategies to improve sensitivity and selectivity for the analysis of complex matrices. Instrum Sci Technol 40:112–37.
  • Ly L, Wasinger VC. (2011). Protein and peptide fractionation, enrichment and depletion: tools for the complex proteome. Proteomics 11:513–34.
  • Mallet CR, Lu Z, Mazzeo JR. (2004). A study of ion suppression effects in electrospray ionization from mobile phase additives and solid‐phase extracts. Rapid Commun Mass Spectrom 18:49–58.
  • Mant CT, Chen Y, Yan Z, et al. (2007). HPLC analysis and purification of peptides. In: Fields GB, ed. Peptide characterization and application protocols. Totowa (NJ): Springer, 3–55.
  • Maráková K. (2022). The crucial step in every analytical workflow: sample preparation—are we ready for a growing area of intact protein analysis? LCGC N Am 40:321–3.
  • Maráková K, Rai AJ, Schug KA. (2020). Effect of difluoroacetic acid and biological matrices on the development of a liquid chromatography–triple quadrupole mass spectrometry method for determination of intact growth factor proteins. J Sep Sci 43:1663–77.
  • Maráková K, Renner BJ, Thomas SL, et al. (2023). Solid phase extraction as sample pretreatment method for top-down quantitative analysis of low molecular weight proteins from biological samples using liquid chromatography–triple quadrupole mass spectrometry. Anal Chim Acta 1243:340801.
  • Martin M, Guiochon G. (2005). Effects of high pressure in liquid chromatography. J Chromatogr A 1090:16–38.
  • Martina V, Vojtech K. (2015). A comparison of Biuret, Lowry and Bradford methods for measuring the egg’s proteins. Mendel Net 394–8.
  • Massolini G, Calleri E. (2005). Immobilized trypsin systems coupled on‐line to separation methods: recent developments and analytical applications. J Sep Sci 28:7–21.
  • McCalley DV. (2005). Comparison of an organic polymeric column and a silica-based reversed-phase for the analysis of basic peptides by high-performance liquid chromatography. J Chromatogr A 1073:137–45.
  • McDonald WH, Ohi R, Miyamoto DT, et al. (2002). Comparison of three directly coupled HPLC MS/MS strategies for identification of proteins from complex mixtures: single-dimension LC-MS/MS, 2-phase MudPIT, and 3-phase MudPIT. Int J Mass Spectrom 219:245–51.
  • Medzihradszky KF. (2005). In‐solution digestion of proteins for mass spectrometry. Methods Enzymol 405:50–65.
  • Millet A, Khoudour N, Bros P, et al. (2021). Quantification of nivolumab in human plasma by LC-MS/HRMS and LC-MS/MS, comparison with ELISA. Talanta 224:121889.
  • Millioni R, Tolin S, Puricelli L, et al. (2011). High abundance proteins depletion vs low abundance proteins enrichment: comparison of methods to reduce the plasma proteome complexity. PLoS One 6:e19603.
  • Miyachi A, Kobayashi M, Mieno E, et al. (2017). Accurate analytical method for human plasma glucagon levels using liquid chromatography-high resolution mass spectrometry: comparison with commercially available immunoassays. Anal Bioanal Chem 409:5911–18.
  • Mochizuki T, Shibata K, Naito T, et al. (2022). LC-MS/MS method for the quantitation of serum tocilizumab in rheumatoid arthritis patients using rapid tryptic digestion without IgG purification. J Pharm Anal 12:852–59.
  • Nasiri A, Jahani R, Mokhtari S, et al. (2021). Overview, consequences, and strategies for overcoming matrix effects in LC-MS analysis: a critical review. Analyst 146:6049–63.
  • Neagu A-N, Jayathirtha M, Baxter E, et al. (2022). Applications of tandem mass spectrometry (MS/MS) in protein analysis for biomedical research. Molecules 27:2411.
  • Nehete J, Bhambar R, Narkhede M, et al. (2013). Natural proteins: sources, isolation, characterization and applications. Phcog Rev 7:107.
  • Neubert H, Shuford CM, Olah TV, et al. (2020). Protein biomarker quantification by immunoaffinity liquid chromatography–tandem mass spectrometry: current state and future vision. Clin Chem 66:282–301.
  • Neverova I, Van Eyk JE. (2005). Role of chromatographic techniques in proteomic analysis. J Chromatogr B 815:51–63.
  • Noble J, Knight A, Reason A, et al. (2007). A comparison of protein quantitation assays for biopharmaceutical applications. Mol Biotechnol 37:99–111.
  • Noble JE, Bailey MJ. (2009). Quantitation of protein. Meth Enzymol 463:73–95.
  • Olson BJ. (2016). Assays for determination of protein concentration. Curr Protoc Pharmacol 73:A.3A.1–32.
  • Paliwal SK, De Frutos M, Regnier FE. (1996). [6] Rapid separations of proteins by liquid chromatography. In: Karger BL, Hancock WS, eds. Methods in enzymology. Amsterdam, Netherlands: Elsevier, 133–51.
  • Pan S, Aebersold R, Chen R, et al. (2009). Mass spectrometry based targeted protein quantification: methods and applications. J Proteome Res 8:787–97.
  • Patrie SM, Cline EN. (2020). Top-down mass spectrometry for protein molecular diagnostics, structure analysis, and biomarker discovery. In: Issaq HJ, Veenstra TD, eds. Proteomic and metabolomic approaches to biomarker discovery. Massachusetts: Elsevier, 313–26.
  • Peng J, Elias JE, Thoreen CC, et al. (2003). Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC–MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2:43–50.
  • Permentier HP, Jurva U, Barroso B, et al. (2003). Electrochemical oxidation and cleavage of peptides analyzed with on‐line mass spectrometric detection. Rapid Commun Mass Spectrom 17:1585–92.
  • Pietrowska M, Wlosowicz A, Gawin M, et al. (2019). MS-based proteomic analysis of serum and plasma: problem of high abundant components and lights and shadows of albumin removal. In: Capelo-Martínez J-L, ed. Emerging sample treatments in proteomics. Cham, Switzerland: Springer, 57–76.
  • Płotka-Wasylka J, Szczepańska N, La Guardia D, et al. (2015). Miniaturized solid-phase extraction techniques. Trends Anal Chem 73:19–38.
  • Plumb RS, Fujimoto G, Mather J, et al. (2012). Comparison of the quantification of a therapeutic protein using nominal and accurate mass MS/MS. Bioanalysis 4:605–15.
  • Podgornik A, Yamamoto S, Peterka M, et al. (2013). Fast separation of large biomolecules using short monolithic columns. J Chromatogr B 927:80–9.
  • Polson C, Sarkar P, Incledon B, et al. (2003). Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography–tandem mass spectrometry. J Chromatogr B 785:263–75.
  • Porstmann T, Kiessig S. (1992). Enzyme immunoassay techniques an overview. J Immunol Methods 150:5–21.
  • Prasad S, Mandal I, Singh S, et al. (2017). Near UV-visible electronic absorption originating from charged amino acids in a monomeric protein. Chem Sci 8:5416–33.
  • Pratt MS, Van Faassen M, Remmelts N, et al. (2021). An antibody-free LC-MS/MS method for the quantification of intact insulin-like growth factors 1 and 2 in human plasma. Anal Bioanal Chem 413:2035–44.
  • Rauh M. (2012). LC–MS/MS for protein and peptide quantification in clinical chemistry. J Chromatogr B 883:59–67.
  • Regnier FE. (1987). The role of protein structure in chromatographic behavior. Science 238:319–23.
  • Reinmuth-Selzle K, Tchipilov T, Backes AT. (2022). Determination of the protein content of complex samples by aromatic amino acid analysis, liquid chromatography-UV absorbance, and colorimetry. Anal Bioanal Chem 414:4457–70.
  • Righetti PG, Boschetti E. (2015). Sample treatment methods involving combinatorial Peptide ligand libraries for improved proteomes analyses. In: Vlahou A, Makridakis M, eds. Clinical proteomics. New York: Springer, 55–82.
  • Rizzo F. (2022). Optical immunoassays methods in protein analysis: an overview. Chemosensors 10:326.
  • Rodger A, Sanders K. (2017). Uv-visible absorption spectroscopy, biomacromolecular applications. In: Lindon JC, Tranter GE, Koppenaal DW, eds. Encyclopedia of spectroscopy and spectrometry. London: Elsevier, 495–502.
  • Russell LE, Schleiff MA, Gonzalez E, et al. (2020). Advances in the study of drug metabolism–symposium report of the 12th Meeting of the International Society for the Study of Xenobiotics (ISSX). Drug Metab Rev 52:395–407.
  • Russell LE, Zhou Y, Almousa AA, et al. (2021). Pharmacogenomics in the era of next generation sequencing–from byte to bedside. Drug Metab Rev 53:253–78.
  • Saveliev S, Engel L, Strauss E, et al., 2007. The advantages to using Arg-C, Elastase [online]. Available at: https://www.promega.kr/resources/pubhub/the-advantages-to-using-arg-c-elastase-thermolysin-and-pepsin-for-protein-analysis/ [last accessed 2012].
  • Schaich K. (2016). Analysis of lipid and protein oxidation in fats, oils, and foods. In: Hu M, Jacobsen C, eds. Oxidative stability and shelf life of foods containing oils and fats. Amsterdam, Netherlands: Elsevier, 1–131.
  • Schmidt A, Karas M, Dülcks T. (2003). Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: when does ESI turn into nano-ESI? J Am Soc Mass Spectrom 14:492–500.
  • Schneck NA, Phinney KW, Lee SB, et al. (2018). Quantification of cardiac troponin I in human plasma by immunoaffinity enrichment and targeted mass spectrometry. Anal Bioanal Chem 410:2805–13.
  • Scientific T. (2013). Pierce BCA protein assay kit. Pierce BCA 449.
  • Sedláčková S, Hubálek M, Vrkoslav V, et al. (2022). Utility of atmospheric-pressure chemical ionization and photoionization mass spectrometry in bottom-up proteomics. Separations 9:42.
  • Sentellas S, Saurina J, Núñez O. (2020). Solid-phase extraction in bioanalytical applications. In: Poole CF, ed. Amsterdam, Netherlands: Solid-phase extraction. Elsevier, 673–98.
  • Shah K, Maghsoudlou P. (2016). Enzyme-linked immunosorbent assay (ELISA): the basics. Br J Hosp Med 77:C98–101.
  • Shi J, Phipps WS, Owusu BY, et al. (2022). A distributable LC-MS/MS method for the measurement of serum thyroglobulin. JMSACL 26:28–33.
  • Shi T, Su D, Liu T, et al. (2012a). Advancing the sensitivity of selected reaction monitoring‐based targeted quantitative proteomics. Proteomics 12:1074–92.
  • Shi T, Zhou J-Y, Gritsenko MA, et al. (2012b). IgY14 and SuperMix immunoaffinity separations coupled with liquid chromatography–mass spectrometry for human plasma proteomics biomarker discovery. Methods 56:246–53.
  • Shida H, Naito T, Shibata K, et al. (2018). LC–MS/MS method for denosumab quantitation in human serum with rapid protein digestion using immobilized trypsin. Bioanalysis 10:1501–10.
  • Soini E, Hemmilä I. (1979). Fluoroimmunoassay: present status and key problems. Clin Chem 25:353–61.
  • Staub A, Guillarme D, Schappler J, et al. (2011). Intact protein analysis in the biopharmaceutical field. J Pharm Biomed Anal 55:810–22.
  • Steen H, Küster B, Mann M. (2001). Quadrupole time‐of‐flight versus triple‐quadrupole mass spectrometry for the determination of phosphopeptides by precursor ion scanning. J Mass Spectrom 36:782–90.
  • Stoll DR, Harmes DC, Staples GO, et al. (2018). Development of comprehensive online two-dimensional liquid chromatography/mass spectrometry using hydrophilic interaction and reversed-phase separations for rapid and deep profiling of therapeutic antibodies. Anal Chem 90:5923–9.
  • Swaney DL, Wenger CD, Coon JJ. (2010). Value of using multiple proteases for large-scale mass spectrometry-based proteomics. J Proteome Res 9:1323–9.
  • Switzar L, Giera M, Niessen WM. (2013). Protein digestion: an overview of the available techniques and recent developments. J Proteome Res 12:1067–77.
  • Tang K, Page JS, Smith RD. (2004). Charge competition and the linear dynamic range of detection in electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 15:1416–23.
  • Tang YQ, Weng N. (2013). Salting-out assisted liquid–liquid extraction for bioanalysis. Bioanalysis 5:1583–98.
  • Tanna NN, Lame ME, Wrona M. (2020). Development of an UPLC/MS–MS method for quantification of intact IGF-I from human serum. Bioanalysis 12:53–65.
  • Thomas SL, Thacker JB, Schug KA, et al. (2021). Sample preparation and fractionation techniques for intact proteins for mass spectrometric analysis. J Sep Sci 44:211–46.
  • Tomov DG, Bocheva G, Divarova V, et al. (2021). Phase separation liquid-liquid extraction for the quantification of 8-iso-prostaglandin F2 alpha in human plasma by LC-MS/MS. J Med Biochemistry 40:10–16.
  • Toth CA, Kuklenyik Z, Jones JI, et al. (2017). On-column trypsin digestion coupled with LC-MS/MS for quantification of apolipoproteins. J Proteomics 150:258–67.
  • Tran P, Park J-S. (2022). Alginate-coated chitosan nanoparticles protect protein drugs from acid degradation in gastric media. J Pharm Investig 52:465–76.
  • Unwin RD, Griffiths JR, Leverentz MK, et al. (2005). Multiple reaction monitoring to identify sites of protein phosphorylation with high sensitivity* S. Mol Cell Proteom 4:1134–44.
  • Van De Merbel NC. (2019). Protein quantification by LC–MS: a decade of progress through the pages of Bioanalysis. Bioanalysis 11:629–44.
  • Van Den Broek I, Niessen WM, Van Dongen WD. (2013). Bioanalytical LC–MS/MS of protein-based biopharmaceuticals. J Chromatogr B 929:161–79.
  • Van Den Broek I, Nouta J, Razavi M, et al. (2015). Quantification of serum apolipoproteins AI and B-100 in clinical samples using an automated SISCAPA–MALDI-TOF-MS workflow. Methods 81:74–85.
  • Van Den Broek I, Sparidans RW, Schellens JH, et al. (2008). Quantitative bioanalysis of peptides by liquid chromatography coupled to (tandem) mass spectrometry. J Chromatogr B 872:1–22.
  • Van Dongen WD, Niessen WM. (2012). LC–MS systems for quantitative bioanalysis. Bioanalysis 4:2391–9.
  • Vuckovic D. (2020). Sample preparation in global metabolomics of biological fluids and tissues. In: Issaq HJ, Veenstra TD, eds. Proteomic and metabolomic approaches to biomarker discovery. Amsterdam, Netherlands: Elsevier, 53–83.
  • Walker JM. (2009). The bicinchoninic acid (BCA) assay for protein quantitation. In: Walker OM, ed. The protein protocols handbook. New Jersey: Springer, 11–5.
  • Wang EH, Nagarajan Y, Carroll F, et al. (2016a). Reversed‐phase separation parameters for intact proteins using liquid chromatography with triple quadrupole mass spectrometry. J Sep Sci 39:3716–27.
  • Wang H, Wu J, Pan P, et al. (2022). Novel sequential immunocapture microflow LC/MS/MS approach to measuring PTH-Fc protein in human serum. Bioanalysis 14:137–49.
  • Wang L, Wei W, Xia Z, et al. (2016b). Recent advances in materials for stationary phases of mixed-mode high-performance liquid chromatography. Trend Anal Chem 80:495–506.
  • Wei Y, Fan L, Chen L. (1997). Effect of different pore diameter silica based polymer-bonded phases and mobile phase on separation of proteins. Chromatographia 46:637–40.
  • Willems S, Sleumer B, Van De Merbel N. (2021). Enzymatic digestion of proteins in biological samples for quantification with LC-MS/MS. Anal Biochem 6:1–30.
  • Xia Y-Q, Wu ST, Jemal M. (2008). LC-FAIMS-MS/MS for quantification of a peptide in plasma and evaluation of FAIMS global selectivity from plasma components. Anal Chem 80:7137–43.
  • Xindu G, Regnier FE. (1984). Retention model for proteins in reversed-phase liquid chromatography. J Chromatogr A 296:15–30.
  • Yamaguchi H, Miyazaki M, Kawazumi H, et al. (2010). Multidigestion in continuous flow tandem protease-immobilized microreactors for proteomic analysis. Anal Biochem 407:12–8.
  • Yang Z, Hayes M, Fang X, et al. (2007). LC–MS/MS approach for quantification of therapeutic proteins in plasma using a protein internal standard and 2D-solid-phase extraction cleanup. Anal Chem 79:9294–301.
  • Yanti S, Wu Z-W, Agrawal DC, et al. (2021). Interaction between phloretin and insulin: a spectroscopic study. J Anal Sci Technol 12:1–16.
  • You WW, Haugland RP, Ryan DK, et al. (1997). 3-(4-carboxybenzoyl) quinoline-2-carboxaldehyde, a reagent with broad dynamic range for the assay of proteins and lipoproteins in solution. Anal Chem 244:277–82.
  • Yuan L. (2019). Sample preparation for LC‐MS bioanalysis of peptides. In: Li W, Jian W, Fu Y, eds. Sample preparation in LC‐MS bioanalysis. New Jersey: John Wiley & Sons, 284–303.
  • Zhang J, Wang Q, Kleintop B, et al. (2014). Suppression of peak tailing of phosphate prodrugs in reversed-phase liquid chromatography. J Pharm Biomed Anal 98:247–52.
  • Zhang J, Xiong X. (2019). Salting‐out assisted liquid–liquid extraction (SALLE) in LC‐MS bioanalysis. In: Li W, Jian W, Fu Y, eds. Sample preparation in LC‐MS bioanalysis. New Jersey: John Wiley & Sons, 68–75.
  • Zhao L, Juck M. (2018). Protein precipitation for biological fluid samples using Agilent Captiva EMR-lipid 96-well plates. New Jersey: Agilent Technologies.
  • Zhao Y, Gu H, Zheng N, et al. (2018a). Critical considerations for immunocapture enrichment LC–MS bioanalysis of protein therapeutics and biomarkers. Bioanalysis 10:987–95.
  • Zhao Y, Liu G, Kwok S, et al. (2018b). Highly selective and sensitive measurement of active forms of FGF21 using novel immunocapture enrichment with LC–MS/MS. Bioanalysis 10:23–33.
  • Zheng J, Mehl J, Zhu Y, et al. (2014a). Application and challenges in using LC–MS assays for absolute quantitative analysis of therapeutic proteins in drug discovery. Bioanalysis 6:859–79.
  • Zheng N, Jiang H, Zeng J. (2014b). Current advances and strategies towards fully automated sample preparation for regulated LC–MS/MS bioanalysis. Bioanalysis 6:2441–59.
  • Zhou J, Liu H, Liu Y, et al. (2016). Development and evaluation of a parallel reaction monitoring strategy for large-scale targeted metabolomics quantification. Anal Chem 88:4478–86.
  • Zhou NE, Mant CT, Kirkland JJ, et al. (1991). Comparison of silica-based cyanopropyl and octyl reversed-phase packings for the separation of peptides and proteins. J Chromatogr A 548:179–93.
  • Zhou T, Ran J, Xu P, et al. (2022). A hyaluronic acid/platelet-rich plasma hydrogel containing MnO2 nanozymes efficiently alleviates osteoarthritis in vivo. Carbohydr Polym 292:119667.
  • Zhou W, Yang S, Wang PG. 2017. Matrix effects and application of matrix effect factor. Bioanalysis 9:1839–44.
  • Zhu C, Goodall D, Wren S. (2004). Elevated temperature HPLC: principles and applications to small molecules and biomolecules. LCGC Eur 17:530–40.
  • Zubarev RA, Makarov A. 2013. Orbitrap mass spectrometry. Washington: ACS Publications.
  • Žuvela P, Skoczylas M, Jay Liu J, et al. (2019). Column characterization and selection systems in reversed-phase high-performance liquid chromatography. Chem Rev 119:3674–729.