1,721
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Physicochemical properties and micro-interaction between micro-nanoparticles and anterior corneal multilayer biological interface film for improving drug delivery efficacy: the transformation of tear film turnover mode

, , , ORCID Icon, , , , , , , , & ORCID Icon show all
Article: 2184312 | Received 12 Oct 2022, Accepted 11 Dec 2022, Published online: 03 Mar 2023

References

  • Abdel Azim EA, Elkheshen SA, Hathout RM, et al. (2022). Augmented in vitro and in vivo profiles of brimonidine tartrate using gelatinized-core liposomes. Int J Nanomed 17:1–13.
  • Baek M, Lee J-A, Choi S-J. (2012). Toxicological effects of a cationic clay, montmorillonite in vitro and in vivo. Mol Cell Toxicol 8:95–101.
  • Bengani LC, Kobashi H, Ross AE, et al. (2020). Steroid-eluting contact lenses for corneal and intraocular inflammation. Acta Biomater 116:149–61.
  • Bera H, Abbasi YF, Yoke FF, et al. (2019). Ziprasidone-loaded arabic gum modified montmorillonite-tailor-made pectin based gastroretentive composites. Int J Biol Macromol 129:552–63.
  • Biro T, Horvat G, Budai-Szucs M, et al. (2018). Development of prednisolone-containing eye drop formulations by cyclodextrin complexation and antimicrobial, mucoadhesive biopolymer. Drug Des Dev Ther 12:2529–37.
  • Bravo-Osuna I, Andres-Guerrero V, Pastoriza Abal P, et al. (2016). Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases. Drug Deliv Transl Res 6:686–707.
  • Chang SC, Lee VH. (1987). Nasal and conjunctival contributions to the systemic absorption of topical timolol in the pigmented rabbit: implications in the design of strategies to maximize the ratio of ocular to systemic absorption. J Ocular Pharmacol 3:159–69.
  • Doktorovova S, Shegokar R, Martins-Lopes P, et al. (2012). Modified Rose Bengal assay for surface hydrophobicity evaluation of cationic solid lipid nanoparticles (cSLN). Eur J Pharm Sci 45:606–12.
  • Ertem G, Steudel A, Emmerich K, et al. (2010). Correlation between the extent of catalytic activity and charge density of montmorillonites. Astrobiology 10:743–9.
  • Gote V, Sikder S, Sicotte J, Pal D. (2019). Ocular drug delivery: present innovations and future challenges. J Pharmacol Exp Ther 370:602–24.
  • Han X, Zhao Y, Liu H, et al. (2021). Micro-interaction of mucin tear film interface with particles: The inconsistency of pharmacodynamics and precorneal retention of ion-exchange, functionalized, Mt-embedded nano- and microparticles. Colloids Surf B Biointerfaces 197:111355.
  • Hathout RM, Gad HA, Abdel-Hafez SM, et al. (2019). Gelatinized core liposomes: a new Trojan horse for the development of a novel timolol maleate glaucoma medication. Int J Pharm 556:192–9.
  • Hitoshi S, Kenzo Y, Koyo N, et al. (1996). Delivery of drugs to the eye by topical application. Prog Retinal Eye Res 15:583–620.
  • Horvat G, Gyarmati B, Berko S, et al. (2015). Thiolated poly(aspartic acid) as potential in situ gelling, ocular mucoadhesive drug delivery system. Eur J Pharm Sci 67:1–11.
  • Hotujac Grgurevic M, Juretic M, Hafner A, et al. (2017). Tear fluid-eye drops compatibility assessment using surface tension. Drug Dev Ind Pharm 43:275–82.
  • Huang W, Zhang N, Hua H, et al. (2016). Preparation, pharmacokinetics and pharmacodynamics of ophthalmic thermosensitive in situ hydrogel of betaxolol hydrochloride. Biomed Pharmacother 83:107–13.
  • Imperiale JC, Acosta GB, Sosnik A. (2018). Polymer-based carriers for ophthalmic drug delivery. J Control Release 285:106–41.
  • Janagam DR, Wu L, Lowe TL. (2017). Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev 122:31–64.
  • Kang H, Cha KH, Cho W, et al. (2016). Cyclosporine amicellar delivery system for dry eyes. Int J Nanomed 11:2921–33.
  • Khames A, Khaleel MA, El-Badawy MF, El-Nezhawy AOH. (2019). Natamycin solid lipid nanoparticles—sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: preparation and optimization. Int J Nanomed 14:2515–31.
  • Khan N, Khanna K, Bhatnagar A, et al. (2018). Chitosan coated PLGA nanoparticles amplify the ocular hypotensive effect of forskolin: Statistical design, characterization and in vivo studies. Int J Biol Macromol 116:648–63.
  • Li J, Tian S, Tao Q, et al. (2018). Montmorillonite/chitosan nanoparticles as a novel controlled-release topical ophthalmic delivery system for the treatment of glaucoma. Int J Nanomed 13:3975–87.
  • Liu H, Han X, Li H, et al. (2021). Wettability and contact angle affect precorneal retention and pharmacodynamic behavior of microspheres. Drug Deliv 28:2011–23.
  • Liu S, Dozois MD, Chang CN, et al. (2016). Prolonged ocular retention of mucoadhesive nanoparticle eye drop formulation enables treatment of eye diseases using significantly reduced dosage. Mol Pharm 13:2897–905.
  • Liu S, Han X, Liu H, et al. (2020). Incorporation of ion exchange functionalized-montmorillonite into solid lipid nanoparticles with low irritation enhances drug bioavailability for glaucoma treatment. Drug Deliv 27:652–61.
  • Mahdi ES, Noor AM, Sakeena MH, et al. (2011). Formulation and in vitro release evaluation of newly synthesized palm kernel oil esters-based nanoemulsion delivery system for 30% ethanolic dried extract derived from local Phyllanthus urinaria for skin antiaging. Int J Nanomed 6:2499–512.
  • Mullertz O, Hedengran A, Mouhammad ZA, et al. (2021). Impact of benzalkonium chloride-preserved and preservative-free latanoprost eye drops on cultured human conjunctival goblet cells upon acute exposure and differences in physicochemical properties of the eye drops. BMJ Open Ophth 6:e000892.
  • Nowell CS, Radtke F. (2017). Corneal epithelial stem cells and their niche at a glance. J Cell Sci 130:1021–5.
  • Onyebuchi C, Kavaz D. (2019). Chitosan and N,N,N-trimethyl chitosan nanoparticle encapsulation of ocimum gratissimum essential oil: optimised synthesis, in vitro release and bioactivity. Int J Nanomed 14:7707–27.
  • Paradkar MU, Parmar M. (2017). Formulation development and evaluation of Natamycin niosomal in-situ gel for ophthalmic drug delivery. J Drug Delivery Sci Technol 39:113–22.
  • Park JH, Shin HJ, Kim MH, et al. (2016). Application of montmorillonite in bentonite as a pharmaceutical excipient in drug delivery systems. J Pharm Investig 46:363–75.
  • Quigley HA. (2011). Glaucoma. Lancet 377:1367–77.
  • Radmanesh F, Rijnaarts T, Moheb A, et al. (2019). Enhanced selectivity and performance of heterogeneous cation exchange membranes through addition of sulfonated and protonated Montmorillonite. J Colloid Interface Sci 533:658–70.
  • Rahic O, Tucak A, Omerovic N, et al. (2020). Novel drug delivery systems fighting glaucoma: formulation obstacles and solutions. Pharmaceutics 13:28.
  • Rolando M, Zierhut M. (2001). The ocular surface and tear film and their dysfunction in dry eye disease. Surv Ophthalmol 45:S203–S210.
  • Roque L, Castro P, Molpeceres J, et al. (2018). Bioadhesive polymeric nanoparticles as strategy to improve the treatment of yeast infections in oral cavity: in-vitro and ex-vivo studies. Eur Polym J 104:19–31.
  • Sandri G, Bonferoni MC, Ferrari F, et al. (2014). Montmorillonite-chitosan-silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: in vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohydr Polym 102:970–7.
  • Schwartz GF, Quigley HA. (2008). Adherence and persistence with glaucoma therapy. Surv Ophthalmol 53:S57–S68.
  • Schwarz C, Mehnert W, Lucks JS, Müller RH. (1994). Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J Controlled Release 30:83–96.
  • Sebbag L, Moody LM, Mochel JP. (2019). Albumin levels in tear film modulate the bioavailability of medically-relevant topical drugs. Front Pharmacol 10:1560.
  • Sharif NA. (2021). Therapeutic drugs and devices for tackling ocular hypertension and glaucoma, and need for neuroprotection and cytoprotective therapies. Front Pharmacol 12:729249.
  • Sigurdsson HH, Kirch J, Lehr CM. (2013). Mucus as a barrier to lipophilic drugs. Int J Pharm 453:56–64.
  • Suri R, Neupane YR, Mehra N, et al. (2021). Sirolimus loaded chitosan functionalized poly(lactic-co-glycolic acid) (PLGA) nanoparticles for potential treatment of age-related macular degeneration. Int J Biol Macromol 191:548–59.
  • Tham YC, Li X, Wong TY, et al. (2014). Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121:2081–90.
  • Tian S, Li J, Tao Q, et al. (2018). Controlled drug delivery for glaucoma therapy using montmorillonite/Eudragit microspheres as an ion-exchange carrier. Int J Nanomed 13:415–28.
  • Van Haeringen NJ. (1981). Clinical biochemistry of tears. Surv Ophthalmol 26:84–96.
  • Wang X, Zhang Y, Huang J, et al. (2019). Self-assembled hexagonal liquid crystalline gels as novel ocular formulation with enhanced topical delivery of pilocarpine nitrate. Int J Pharm 562:31–41.
  • Weinreb RN, Aung T, Medeiros FA. (2014). The pathophysiology and treatment of glaucoma: a review. JAMA 311:1901–11.
  • Xu W, Peng J, Ni D, et al. (2020). Preparation, characterization and application of levan/montmorillonite biocomposite and levan/BSA nanoparticle. Carbohydr Polym 234:115921.
  • Zhu S, Khan MA, Wang F, et al. (2021). Exploration of adsorption mechanism of 2-phosphonobutane-1,2,4-tricarboxylic acid onto kaolinite and montmorillonite via batch experiment and theoretical studies. J Hazard Mater 403:123810.