1,698
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Advance in placenta drug delivery: concern for placenta-originated disease therapy

, , , , , , ORCID Icon, & show all
Article: 2184315 | Received 30 Nov 2022, Accepted 30 Jan 2023, Published online: 08 Mar 2023

References

  • Abd Ellah N, Taylor L, Troja W, et al. (2015). Development of non-viral, trophoblast-specific gene delivery for placental therapy. PLoS One 10:1.
  • Abdelghani M, Shao J, Le DH, et al. (2021). Self‐assembly or coassembly of multiresponsive histidine‐containing elastin‐like polypeptide block copolymers. Macromol Biosci 21:2100081.
  • Aengenheister L, Dietrich D, Sadeghpour A, et al. (2018). Gold nanoparticle distribution in advanced in vitro and ex vivo human placental barrier models. J Nanobiotechnol 16:79.
  • Aengenheister L, Dugershaw BB, Manser P, et al. (2019). Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models. Eur J Pharm Biopharm 142:488–18.
  • Aengenheister L, Favaro RR, Morales-Prieto DM, et al. (2021). Research on nanoparticles in human perfused placenta: State of the art and perspectives. Placenta 104:199–207.
  • Al-Enazy S, Ali S, Albekairi N, et al. (2017). Placental control of drug delivery. Adv Drug Delivery Rev 116:63–72.
  • Albanese A, Tang PS, Chan WCW. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16.
  • Ali H, Kalashnikova I, White MA, et al. (2013). Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model. Int J Pharm 454:149–57.
  • Ali S, Rytting E. (2014). Influences of nanomaterials on the barrier function of epithelial cells. Nanomaterial 811:45–54.
  • Aljunaidy MM, Morton JS, Kirschenman R, et al. (2018). Maternal treatment with a placental-targeted antioxidant (MitoQ) impacts offspring cardiovascular function in a rat model of prenatal hypoxia. Pharmacol Res 134:332–42.
  • Ampasavate C, Chandorkar GA, Vande Velde DG, et al. (2002). Transport and metabolism of opioid peptides across BeWo cells, an in vitro model of the placental barrier. Int J Pharm 233:85–98.
  • Andaluz A, Santos L, García F, et al. (2013). Maternal and foetal cardiovascular effects of the anaesthetic alfaxalone in 2-hydroxypropyl-β-cyclodextrin in the pregnant ewe. Sci World J 189843. DOI:10.1155/2013/189843.
  • Anselmo AC, Mitragotri S. (2016). Nanoparticles in the clinic. Bioeng Transl Med 1:10–29.
  • Arumugasaamy N, Rock KD, Kuo CY, et al. (2020). Microphysiological systems of the placental barrier. Adv Drug Delivery Rev 161:161–75.
  • Audus KL. (1999). Controlling drug delivery across the placenta. Eur J Pharm Sci 8:161–5.
  • Bajoria R, Fisk NM, Contractor SF. (1997). Liposomal thyroxine: A noninvasive model for transplacental fetal therapy. J Clin Endocrinol Metab 82:3271–7.
  • Balansky R, Longobardi M, Gancheva G, et al. (2013). Transplacental clastogenic and epigenetic effects of gold nanoparticles in mice. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis 751:42–8.
  • Barzago MM, Bortolotti A, Stellari FF, et al. (1996). Placental transfer of valproic acid after liposome encapsulation during in vitro human placenta perfusion. J Pharmacol Exp Ther 277:79–86.
  • Beards F, Jones LE, Charnock J, et al. (2017). Placental Homing Peptide-microRNA Inhibitor Conjugates for Targeted Enhancement of Intrinsic Placental Growth Signaling. Theranostics 7:2940–55.
  • Bongaerts E, Nawrot TS, Van Pee T, et al. (2020). Translocation of (ultra)fine particles and nanoparticles across the placenta; a systematic review on the evidence of in vitro, ex vivo, and in vivo studies. Part Fibre Toxicol 17:56.
  • Bosco C, Buffet C, Bello MA, et al. (2007). Placentation in the degu (Octodon degus): Analogies with extrasubplacental trophoblast and human extravillous trophoblast. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology 146:475–85.
  • Brosens I, Puttemans P, Benagiano G. (2019). Placental bed research: I. The Placental Bed: From Spiral Arteries Remodeling to the Great Obstetrical Syndromes. Am J Obstet Gynecol 221:437–56.
  • Brown DM, Wilson MR, Macnee W, et al. (2001). Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–9.
  • Burton GJ, Redman CW, Roberts JM, et al. (2019). Pre-eclampsia: pathophysiology and clinical implications. British Medical Journal 366:l2381.
  • Burton GJ, Woods AW, Jauniaux E, et al. (2009). Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 30:473–82.
  • Cartwright L, Poulsen MS, Nielsen HM, et al. (2012). In vitro placental model optimization for nanoparticle transport studies. Int J Nanomed 7:497.
  • Chu MQ, Wu Q, Yang H, et al. (2010). Transfer of Quantum Dots from Pregnant Mice to Pups Across the Placental Barrier. Small 6:670–8.
  • Conner SD, Schmid SL. (2003). Regulated portals of entry into the cell. Nature 422:37–44.
  • Cureton N, Korotkova I, Baker B, et al. (2017). Selective Targeting of a Novel Vasodilator to the Uterine Vasculature to Treat Impaired Uteroplacental Perfusion in Pregnancy. Theranostics 7:3715–31.
  • Dahiya UR, Ganguli M. (2019). Exocytosis - a putative road-block in nanoparticle and nanocomplex mediated gene delivery. J Controlled Release 303:67–76.
  • Das J, Choi YJ, Song H, et al. (2016). Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: treatment strategies and anticipated applications of nanoparticles in gene delivery. Hum Reprod Update 22:588–619.
  • Di Bona KR, Xu Y, Ramirez PA, et al. (2014). Surface charge and dosage dependent potential developmental toxicity and biodistribution of iron oxide nanoparticles in pregnant CD-1 mice. Reprod Toxicol 50:36–42.
  • Dilworth MR, Sibley CP. (2013). Review: Transport across the placenta of mice and women. Placenta 34:S34–S39.
  • Edis Z, Wang J, Waqas MK, et al. (2021). Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and perspectives. IJN Volume 16:1313–30.
  • Ema M, Hougaard KS, Kishimoto A, et al. (2016). Reproductive and developmental toxicity of carbon-based nanomaterials: A literature review. Nanotoxicology 10:391–412.
  • Ema M, Okuda H, Gamo M, et al. (2017). A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reprod Toxicol 67:149–64.
  • Faber JJ, Thornburg KL, Binder ND. (1992). Physiology of placental transfer in mammals. Am Zool 32:343–54.
  • Fei W, Zhao Y, Wu X, et al. (2021). Nucleoside transporter-guided cytarabine-conjugated liposomes for intracellular methotrexate delivery and cooperative choriocarcinoma therapy. J Nanobiotechnol 19:184.
  • Figueroa-Espada CG, Hofbauer S, Mitchell MJ, et al. (2020). Exploiting the placenta for nanoparticle-mediated drug delivery during pregnancy. Adv Drug Delivery Rev 160:244–61.
  • Grafmueller S, Manser P, Krug HF, et al. (2013). Determination of the Transport Rate of Xenobiotics and Nanomaterials Across the Placenta using the ex vivo Human Placental Perfusion Model. Jove-Journal of Visualized Experiments 76:e50401.
  • Gualtieri M, Capasso L, D’anna A, et al. (2014). Organic nanoparticles from different fuel blends: in vitro toxicity and inflammatory potential. J Appl Toxicol 34:1247–55.
  • Gude NM, Roberts CT, Kalionis B, et al. (2004). Growth and function of the normal human placenta. Thrombosis Research 114:397–407.
  • Guerrini L, Alvarez-Puebla RA, Pazos-Perez N. (2018). Surface modifications of nanoparticles for stability in biological fluids. Materials 11:1154.
  • Gupta SK, Malhotra SS, Malik A, et al. (2016). Cell Signaling Pathways Involved During Invasion and Syncytialization of Trophoblast Cells. Am J Reprod Immunol 75:361–71.
  • Hawkes N. (2018). Trial of Viagra for fetal growth restriction is halted after baby deaths. BMJ 362:k3247.
  • Hawkins SJ, Crompton LA, Sood A, et al. (2018). Nanoparticle-induced neuronal toxicity across placental barriers is mediated by autophagy and dependent on astrocytes. Nature Nanotech 13:427–33.
  • Ho D, Leong JW, Crew RC, et al. (2017). Maternal-placental-fetal biodistribution of multimodal polymeric nanoparticles in a pregnant rat model in mid and late gestation. Sci Rep 7:2866.
  • Hou CC, Zhu JQ. (2017). Nanoparticles and female reproductive system: how do nanoparticles affect oogenesis and embryonic development. Oncotarget 8:109799–817.
  • Huang J-P, Hsieh PCH, Chen C-Y, et al. (2015). Nanoparticles can cross mouse placenta and induce trophoblast apoptosis. Placenta 36:1433–41.
  • Hutz R, Carvan Iii M, Larson J, et al. (2014). Familiar and novel reproductive endocrine disruptors: xenoestrogens, dioxins and nanoparticles. Current Trends in Endocrinology 7:111–22.
  • Illsley NP. (2000). Glucose transporters in the human placenta. Placenta 21:14–22.
  • Immordino ML, Dosio F, Cattel L. (2006). Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed 1:297–315.
  • Irvin-Choy NS, Nelson KM, Gleghorn JP, et al. (2020). Design of nanomaterials for applications in maternal/fetal medicine. J Mater Chem B 8:6548–61.
  • Ji L, Brkic J, Liu M, et al. (2013). Placental trophoblast cell differentiation: Physiological regulation and pathological relevance to preeclampsia. Mol Aspects Med 34:981–1023.
  • Joshi MD. (2017). Drug delivery during pregnancy: how can nanomedicine be used? Therapeutic Delivery 8:1023–5.
  • Kaitu’u-Lino TJ, Pattison S, Ye L, et al. (2013). Targeted Nanoparticle Delivery of Doxorubicin Into Placental Tissues to Treat Ectopic Pregnancies. Endocrinology 154:911–9.
  • Kannan RM, Kannan S. (2017). Emerging nanomedicine approaches in obstetrics. American Journal of Obstetrics & Gynecology 216:201–3.
  • Kaul G, Clemons TD, Iyer KS, et al. (2013). Mechanism of Uptake of Cationic Nanoparticles by Human Placental Syncytiotrophoblast Cells. Reprod Sci 20:113A.
  • Kay H, Zhu S, Tsoi S. (2007). Hypoxia and lactate production in trophoblast cells. Placenta 28:854–60.
  • Keelan JA, Leong JW, Ho DW, et al. (2015). Therapeutic and safety considerations of nanoparticle-mediated drug delivery in pregnancy. Nanomedicine 10:2229–2247.
  • Kenesei K, Murali K, Czeh A, et al. (2016). Enhanced detection with spectral imaging fluorescence microscopy reveals tissue- and cell-type-specific compartmentalization of surface-modified polystyrene nanoparticles. J Nanobiotechnol 14:55.
  • Kertschanska S, Schroder H, Kaufmann P. (1997). The ultrastructure of the trophoblastic layer of the degu (Octodon degus) placenta: A re-evaluation of the ‘channel problem’. Placenta 18:219–225.
  • Kertschanska S, Stulcova B, Kaufmann P, et al. (2000). Distensible transtrophoblastic channels in the rat placenta. Placenta 21:670–677.
  • King A, Ndifon C, Lui S, et al. (2016). Tumor-homing peptides as tools for targeted delivery of payloads to the placenta. Sci Adv 2:e1600349.
  • Koren G, Ornoy A. (2018). The role of the placenta in drug transport and fetal drug exposure. Expert Rev Clin Pharmacol 11:373–385.
  • Kulaga S, Sheehy O, Zargarzadeh AH, et al. (2011). Antiepileptic drug use during pregnancy: Perinatal outcomes. Seizure-Eur J Epilepsy 20:667–672.
  • Kuna M, Waller JP, Logue OC, et al. (2018). Polymer size affects biodistribution and placental accumulation of the drug delivery biopolymer elastin-like polypeptide in a rodent pregnancy model. Placenta 72-73:20–27.
  • Kurz H, Fasching H. (1968). Permeation of drugs across placentol barrier. Naunyn-Schmiedebergs Arch Pharmak u Exp Path 259:214–214.
  • Lala PK, Nandi P, Hadi A, et al. (2021). A crossroad between placental and tumor biology: What have we learnt? Placenta 116:12–30.
  • Li L, Li H, Xue J, et al. (2020a). Nanoparticle-mediated simultaneous downregulation of placental Nrf2 and sFlt1 improves maternal and fetal outcomes in a preeclampsia mouse model. ACS Biomater Sci Eng 6:5866–5873.
  • Li L, Yang H, Chen P, et al. (2020b). Trophoblast-Targeted Nanomedicine Modulates Placental sFLT1 for Preeclampsia Treatment. Front Bioeng Biotechnol 8:64.
  • Liang Y, Duan L, Lu J, et al. (2021). Engineering exosomes for targeted drug delivery. Theranostics 11:3183–3195.
  • Lofthouse EM, Cleal JK, O’Kelly IM, et al. (2018). Estrone sulphate uptake by the microvillous membrane of placental syncytiotrophoblast is coupled to glutamate efflux. Biochem Biophys Res Commun 506:237–242.
  • Lu M, Huang Y. (2020). Bioinspired exosome-like therapeutics and delivery nanoplatforms. Biomaterials 242:119925.
  • Luan S, Xie R, Yang Y, et al. (2022). Acid-Responsive Aggregated Gold Nanoparticles for Radiosensitization and Synergistic Chemoradiotherapy in the Treatment of Esophageal Cancer. Small 18:e2200115.
  • Luo Q, Yang B, Tao W, et al. (2017). ATB(0,+) transporter-mediated targeting delivery to human lung cancer cells via aspartate-modified docetaxel-loading stealth liposomes. Biomater Sci 5:295–304.
  • Menjoge AR, Rinderknecht AL, Navath RS, et al. (2011). Transfer of PAMAM dendrimers across human placenta: Prospects of its use as drug carrier during pregnancy. J Control Release 150:326–38.
  • Müller E, Gräfe C, Wiekhorst F, et al. (2018). Magnetic Nanoparticles Interact and Pass an In Vitro Co-Culture Blood-Placenta Barrier Model. Nanomaterials 8:108.
  • Muoth C, Aengenheister L, Kucki M, et al. (2016). Nanoparticle transport across the placental barrier: pushing the field forward!. Nanomedicine (Lond) 11:941–57.
  • Mura S, Nicolas J, Couvreur P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003.
  • Myllynen PK, Loughran MJ, Howard CV, et al. (2008). Kinetics of gold nanoparticles in the human placenta. Reprod Toxicol 26:130–137.
  • Nel AE, Madler L, Velegol D, et al. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–57.
  • Nelson KM, Irvin-Choy N, Hoffman MK, et al. (2021). Diseases and conditions that impact maternal and fetal health and the potential for nanomedicine therapies. Adv Drug Deliv Rev 170:425–38.
  • Parkkila S, Waheed A, Britton RS, et al. (1997). Association of the transferrin receptor in human placenta with HFE, the protein defective in hereditary hemochromatosis. Proceedings of the National Academy of Sciences of the United States of America 94:13198–202.
  • Paul JW, Hua S, Ilicic M, et al. (2017). Drug delivery to the human and mouse uterus using immunoliposomes targeted to the oxytocin receptor. Am J Obstet Gynecol 216:283.e1–283.e14.
  • Pels A, Beune IM, Van Wassenaer-Leemhuis AG, et al. (2020). Early-onset fetal growth restriction: A systematic review on mortality and morbidity. Acta Obstet Gynecol Scand 99:153–166.
  • Pereira KV, Giacomeli R, Gomes De Gomes M, et al. (2020). The challenge of using nanotherapy during pregnancy: Technological aspects and biomedical implications. Placenta 100:75–80.
  • Pietroiusti A, Vecchione L, Malvindi MA, et al. (2018). Relevance to investigate different stages of pregnancy to highlight toxic effects of nanoparticles: The example of silica. Toxicol Appl Pharmacol 342:60–8.
  • Pritchard N, Kaitu’u-Lino T, Harris L, et al. (2021). Nanoparticles in pregnancy: the next frontier in reproductive therapeutics. Hum Reprod Update 27:280–304.
  • Rana S, Lemoine E, Granger JP, et al. (2019). Preeclampsia: pathophysiology, challenges, and perspectives. Circ Res 124:1094–1112.
  • Rattanapinyopituk K, Shimada A, Morita T, et al. (2014). Demonstration of the Clathrin- and Caveolin-Mediated Endocytosis at the Maternal-Fetal Barrier in Mouse Placenta after Intravenous Administration of Gold Nanoparticles. J Vet Med Sci 76:377–387.
  • Refuerzo JS, Alexander JF, Leonard F, et al. (2015). Liposomes: a nanoscale drug carrying system to prevent indomethacin passage to the fetus in a pregnant mouse model. Am J Obstet Gynecol 212:508.e1–508.e7.
  • Refuerzo JS, Godin B, Bishop K, et al. (2011). Size of the nanovectors determines the transplacental passage in pregnancy: study in rats. Am J Obstet Gynecol 204:546.e5–546.e9. e5.
  • Refuerzo JS, Longo M, Godin B. (2017). Targeted nanoparticles in pregnancy: a new frontier in perinatal therapeutics. Am J Obstet Gynecol 216:204–5.
  • Renshall LJ, Beards F, Evangelinos A, et al. (2021). Targeted Delivery of Epidermal Growth Factor to the Human Placenta to Treat Fetal Growth Restriction. Pharmaceutics 13:1778.
  • Roberts VHJ, Morgan TK, Bednarek P, et al. (2017). Early first trimester uteroplacental flow and the progressive disintegration of spiral artery plugs: new insights from contrast-enhanced ultrasound and tissue histopathology. Hum Reprod 32:2382–2393.
  • Sakhtianchi R, Minchin RF, Lee KB, et al. (2013). Exocytosis of nanoparticles from cells: Role in cellular retention and toxicity. Adv Colloid Interface Sci 201:18–29.
  • Salomon C, Rice GE. (2017). Role of Exosomes in Placental Homeostasis and Pregnancy Disorders. In W. R. Huckle (Ed.), Molecular Biology of Placental Development and Disease. vol. 145. Cambridge, UK: Academic Press, 163–79.
  • Sanita G, Carrese B, Lamberti A. (2020). Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front Mol Biosci 7:587012.
  • Schmidt A, Morales-Prieto DM, Pastuschek J, et al. (2015). Only humans have human placentas: molecular differences between mice and humans. Journal of Reproductive Immunology 108:65–71.
  • Sethuraman V, Janakiraman K, Krishnaswami V, et al. (2021). Recent progress in stimuli-responsive intelligent nano scale drug delivery systems: a special focus towards pH-sensitive systems. CDT 22:947–966.
  • Shields KE, Lyerly AD. (2013). Exclusion of pregnant women from industry-sponsored clinical trials. Obstet Gynecol 122:1077–1081.
  • Shojaei S, Ali MS, Suresh M, et al. (2021). Dynamic placenta-on-a-chip model for fetal risk assessment of nanoparticles intended to treat pregnancy-associated diseases. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1867:166131.
  • Soininen SK, Repo JK, Karttunen V, et al. (2015). Human placental cell and tissue uptake of doxorubicin and its liposomal formulations. Toxicol Lett 239:108–114.
  • Staud F, Cerveny L, Ceckova M. (2012). Pharmacotherapy in pregnancy; effect of ABC and SLC transporters on drug transport across the placenta and fetal drug exposure. J Drug Targeting 20:736–763.
  • Suarez RD, Grobman WA, Parilla BV. (2001). Indomethacin tocolysis and intraventricular hemorrhage. Obstet Gynecol 97:921–5.
  • Suk JS, Xu Q, Kim N, et al. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Delivery Rev 99:28–51.
  • Syme MR, Paxton JW, Keelan JA. (2004). Drug transfer and metabolism by the human placenta. Clin Pharmacokinet 43:487–514.
  • Tang HB, Jiang ZW, He HB, et al. (2018). Uptake and transport of pullulan acetate nanoparticles in the BeWo b30 placental barrier cell model. IJN Volume 13:4073–4082.
  • Tang M, Zhang X, Sun D, et al. (2022). Size-dependent placental retention effect of liposomes in ICR pregnant mice: Potential superiority in placenta-derived disease therapy. Int J Pharm 625:122121.
  • Tasnif Y, Morado J, Hebert MF. (2016). Pregnancy-related pharmacokinetic changes. Clin Pharmacol Ther 100:53–62.
  • Tetro N, Moushaev S, Rubinchik-Stern M, et al. (2018). The Placental Barrier: the Gate and the Fate in Drug Distribution. Pharm Res 35. DOI:10.1007/s11095-017-2286-0.
  • Turanov AA, Lo A, Hassler MR, et al. (2018). RNAi modulation of placental sFLT1 for the treatment of preeclampsia. Nat Biotechnol 36:1164–1173.
  • Tuzelkox SN, Patel HM, Kox WJ. (1995). Uptake of drug-carrier liposomes by placenta: Transplacental delivery of drugs and nutrients. J Pharmacol Exp Ther 274:104–9.
  • Umezawa M, Tainaka H, Kawashima N, et al. (2012). Effect of fetal exposure to titanium dioxide nanoparticle on brain development - brain region information. J Toxicol Sci 37:1247–1252.
  • Unadkat JD, Dahlin A, Vijay S. (2004). Placental drug transporters. CDM 5:125–131.
  • Vader P, Mol EA, Pasterkamp G, et al. (2016). Extracellular vesicles for drug delivery. Adv Drug Delivery Rev 106:148–156.
  • Valero L, Alhareth K, Gil S, et al. (2018). Nanomedicine as a potential approach to empower the new strategies for the treatment of preeclampsia. Drug Discov Today 23:1099–1107.
  • Velicky P, Knofler M, Pollheimer J. (2016). Function and control of human invasive trophoblast subtypes: Intrinsic vs. maternal control. Cell Adh Migr 10:154–162.
  • Venn A, Bruinsma F, Werther G, et al. (2004). Oestrogen treatment to reduce the adult height of tall girls: long-term effects on fertility. Lancet 364:1513–1518.
  • Verougstraete V, Danzeisen R, Burzlaff A, et al. (2018). Mechanisms underlying toxicity of complex inorganic materials. In Risk Management of Complex Inorganic Materials. Cambridge, UK: Academic Press, 27–54.
  • Whigham CA, Macdonald TM, Walker SP, et al. (2019). The untapped potential of placenta-enriched molecules for diagnostic and therapeutic development. Placenta 84:28–31.
  • Wilson RL, Owens K, Sumser EK, et al. (2020). Nanoparticle mediated increased insulin-like growth factor 1 expression enhances human placenta syncytium function. Placenta 93:1–7.
  • Yamashita K, Yoshioka Y, Higashisaka K, et al. (2011). Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nature Nanotech 6:321–328.
  • Yang F, Wei P, Yang M, et al. (2022). Redox-sensitive hyaluronic acid-ferrocene micelles delivering doxorubicin for enhanced tumor treatment by synergistic chemo/chemodynamic therepay. J Drug Delivery Sci Technol 77:103851.
  • Yang H, Du L, Tian X, et al. (2014). Effects of nanoparticle size and gestational age on maternal biodistribution and toxicity of gold nanoparticles in pregnant mice. Toxicol Lett 230:10–18.
  • Yang H, Sun C, Fan Z, et al. (2012). Effects of gestational age and surface modification on materno-fetal transfer of nanoparticles in murine pregnancy. Sci Rep 2:847.
  • Yu J, Jia J, Guo X, et al. (2017). Modulating circulating sFlt1 in an animal model of preeclampsia using PAMAM nanoparticles for siRNA delivery. Placenta 58:1–8.
  • Yu W, Liu R, Zhou Y, et al. (2020). Size-Tunable Strategies for a Tumor Targeted Drug Delivery System. ACS Cent Sci 6:100–116.
  • Žalgevičienė V, Kulvietis V, Bulotienė D, et al. (2012). The effect of nanoparticles in rats during critical periods of pregnancy. Medicina 48:37–64.
  • Zeng QQ, Bai MR, Li C, et al. (2019). Multiple Drug Transporters Contribute to the Placental Transfer of Emtricitabine. Antimicrob Agents Chemother 63:e00199-19.
  • Zhang B, Cheng G, Zheng M, et al. (2018a). Targeted delivery of doxorubicin by CSA-binding nanoparticles for choriocarcinoma treatment. Drug Deliv 25:461–471.
  • Zhang B, Tan L, Yu Y, et al. (2018b). Placenta-specific drug delivery by trophoblast-targeted nanoparticles in mice. Theranostics 8:2765–2781.
  • Zhang BZ, Chen ZL, Han JY, et al. (2018c). Comprehensive Evaluation of the Effectiveness and Safety of Placenta-Targeted Drug Delivery Using Three Complementary Methods. Jove-Journal of Visualized Experiments 139:e58219.
  • Zhang BZ, Liang RJ, Zheng MB, et al. (2019). Surface-Functionalized Nanoparticles as Efficient Tools in Targeted Therapy of Pregnancy Complications. IJMS 20:3642.
  • Zhang BZ, Zheng MB, Cai LT, et al. (2018d). Synthesis and Characterization of Placental Chondroitin Sulfate A (plCSA)-Targeting Lipid-Polymer Nanoparticles. Jove-Journal of Visualized Experiments 139:e58209.
  • Zhang W, Wang F, Hu C, et al. (2020). The progress and perspective of nanoparticle-enabled tumor metastasis treatment. Acta Pharmaceutica Sinica B 10:2037–2053.
  • Zhang X-F, Park J-H, Choi Y-J, et al. (2015). Silver nanoparticles cause complications in pregnant mice. Int J Nanomed 10:7057.
  • Zhang YL, Wu JR, Feng XL, et al. (2017). Current understanding of the toxicological risk posed to the fetus following maternal exposure to nanoparticles. Expert Opin Drug Metab Toxicol 13:1251–1263.