2,431
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Stimuli-sensitive nano-drug delivery with programmable size changes to enhance accumulation of therapeutic agents in tumors

ORCID Icon, , ORCID Icon, , , ORCID Icon, ORCID Icon, & show all
Article: 2186312 | Received 15 Nov 2022, Accepted 06 Feb 2023, Published online: 09 Mar 2023

References

  • Abazari MA, Soltani M, Kashkooli FM. (2023). Targeted nano-sized drug delivery to heterogeneous solid tumor microvasculatures: implications for immunoliposomes exhibiting bystander killing effect. Phys Fluids 35:1.
  • Abazari MA, Soltani M, Moradi Kashkooli F, Raahemifar K. (2022). Synthetic 18F-FDG PET image generation using a combination of biomathematical modeling and machine learning. Cancers 14:2786.
  • Anderson AR, Chaplain MA, McDougall S. (2012). A hybrid discrete-continuum model of tumour induced angiogenesis. Modeling Tumor Vasculature 2012:105–15.
  • Anderson AR, Chaplain MAJ. (1998). Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60:857–99.
  • Anderson AR, Quaranta V. (2008). Integrative mathematical oncology. Nat Rev Cancer 8:227–34.
  • Andriyanov AV, Koren E, Barenholz Y, Goldberg SN. (2014). Therapeutic efficacy of combining pegylated liposomal doxorubicin and radiofrequency (RF) ablation: comparison between slow-drug-releasing, non-thermosensitive and fast-drug-releasing, thermosensitive nano-liposomes. PLoS One 9:e92555.
  • Barbolosi D, Ciccolini J, Lacarelle B, et al. (2016). Computational oncology—mathematical modelling of drug regimens for precision medicine. Nat Rev Clin Oncol 13:242–54.
  • Bertrand N, Wu J, Xu X, et al. (2014). Farokhzad, cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Delivery Rev 66:2–25.
  • Blanco E, Shen H, Ferrari M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–51.
  • Boucher Y, Jain RK. (1992). Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res 52:5110–14.
  • Chauhan VP, Stylianopoulos T, Martin JD, et al. (2012). Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol 7:383–8.
  • Dai Q, Wilhelm S, Ding D, et al. (2018). Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 12:8423–35.
  • Dehaini D, Fang RH, Luk BT, et al. (2016). Ultra-small lipid–polymer hybrid nanoparticles for tumor-penetrating drug delivery. Nanoscale 8:14411–19.
  • Ding J, Chen J, Gao L, et al. (2019). Engineered nanomedicines with enhanced tumor penetration. Nano Today 29:100800.
  • Duan X, Li Y. (2013). Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9:1521–32.
  • Feng X, Chen A, Zhang Y, et al. (2015). Central nervous system toxicity of metallic nanoparticles. Int J Nanomed 10:4321–40.
  • Gao Y, Ren F, Ding B, et al. (2011). A thermo-sensitive PLGA-PEG-PLGA hydrogel for sustained release of docetaxel. J Drug Target 19:516–27.
  • Hu C, Cun X, Ruan S, et al. (2018). Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy. Biomaterials 168:64–75.
  • Igarashi K, Cabral H, Hong T, et al. (2021). Vascular bursts act as a versatile tumor vessel permeation route for blood‐borne particles and cells. Small 17:2103751.
  • Jadidi A, Davoodian F, Salahinejad E. (2020). Effect of poly lactic-co-glycolic acid encapsulation on drug delivery kinetics from vancomycin-impregnated Ca-Mg silicate scaffolds. Prog Org Coat 149:105970.
  • Jadidi A, Shokrgozar MA, Sardari S, Maadani AM. (2022). Gefitinib-loaded polydopamine-coated hollow mesoporous silica nanoparticle for gastric cancer application. Int J Pharm 629:122342.
  • Jain RK, Stylianopoulos T. (2010). Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7:653–64.
  • Karimi M, Ghasemi A, Zangabad PS, et al. (2016). Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45:1457–501.
  • Kashkooli FM, Abazari MA, Soltani M, et al. (2022). A spatiotemporal multi-scale computational model for FDG PET imaging at different stages of tumor growth and angiogenesis. Sci Rep 12:10062.
  • Kashkooli FM, Rezaeian M, Soltani M. (2022). Drug delivery through nanoparticles in solid tumors: a mechanistic understanding. Nanomedicine 17:695–716.
  • Kashkooli FM, Soltani M, Momeni MM, Rahmim A. (2021). Enhanced drug delivery to solid tumors via drug-loaded nanocarriers: an image-based computational framework. Front Oncol 11:655781.
  • Kashkooli FM, Soltani M, Rezaeian M, et al. (2019). Image-based spatio-temporal model of drug delivery in a heterogeneous vasculature of a solid tumor—computational approach. Microvasc Res 123:111–24.
  • Kashkooli FM, Soltani M, Souri M, et al. (2021). Nexus between in silico and in vivo models to enhance clinical translation of nanomedicine. Nano Today 36:101057.
  • Kashkooli FM, Soltani M, Souri M. (2020). Controlled anti-cancer drug release through advanced nano-drug delivery systems: static and dynamic targeting strategies. J Controlled Release 327:316–49.
  • Kiani Shahvandi M, Soltani M, Moradi Kashkooli F, et al. (2022). Spatiotemporal multi-scale modeling of radiopharmaceutical distributions in vascularized solid tumors. Sci Rep 12:14582.
  • Kim S, Jo Y, Kook G, et al. (2021). Transcranial focused ultrasound stimulation with high spatial resolution. Brain Stimul 14:290–300.
  • Ma Y, Wang X, Chen H, et al. (2018). Polyacrylic acid functionalized Co0. 85Se nanoparticles: an ultrasmall pH-responsive nanocarrier for synergistic photothermal-chemo treatment of cancer. ACS Biomater Sci Eng 4:547–57.
  • Mitchell MJ, Billingsley MM, Haley RM, et al. (2021). Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 20:101–24.
  • Mpekris F, Baish JW, Stylianopoulos T, Jain RK. (2017). Role of vascular normalization in benefit from metronomic chemotherapy. Proc Natl Acad Sci USA 114:1994–9.
  • Mpekris F, Voutouri C, Panagi M, et al. (2022). Normalizing tumor microenvironment with nanomedicine and metronomic therapy to improve immunotherapy. J Controlled Release 345:190–9.
  • Namakshenas P, Mojra A. (2020). Microstructure-based non-Fourier heat transfer modeling of HIFU treatment for thyroid cancer. Comput Methods Programs Biomed 197:105698.
  • Namakshenas P, Mojra A. (2023). Efficient drug delivery to hypoxic tumors using thermosensitive liposomes with encapsulated anti-cancer drug under high intensity pulsed ultrasound. Int J Mech Sci 237:107818.
  • Needham D, Dewhirst MW. (2001). The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv Drug Deliv Rev 53:285–305.
  • Poon W, Kingston BR, Ouyang B, et al. (2020). A framework for designing delivery systems. Nat Nanotechnol 15:819–29.
  • Price LS, Stern ST, Deal AM, et al. (2020). A reanalysis of nanoparticle tumor delivery using classical pharmacokinetic metrics. Sci Adv 6:eaay9249.
  • Reviving Failed Antibody Treatments for Solid Tumors, Original story from UVA Cancer Center, (April 7, 2021). Online website: https://www.technologynetworks.com/drug-discovery/news/reviving-failed-antibody-treatments-for-solidtumors-347406
  • Rezaeian M, Sedaghatkish A, Soltani M. (2019). Numerical modeling of high-intensity focused ultrasound-mediated intraperitoneal delivery of thermosensitive liposomal doxorubicin for cancer chemotherapy. Drug Delivery 26:898–917.
  • Roudnicky F, Yoon SY, Poghosyan S, et al. (2018). Alternative transcription of a shorter, non-anti-angiogenic thrombospondin-2 variant in cancer-associated blood vessels. Oncogene 37:2573–85.
  • Seynhaeve A, Amin M, Haemmerich D, et al. (2020). Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Delivery Rev 163:125–44.
  • Sindhwani S, Syed AM, Ngai J, et al. (2020). The entry of nanoparticles into solid tumours. Nat Mater 19:566–75.
  • Solovchuk MA, Sheu TW, Lin W-L, et al. (2012). Simulation study on acoustic streaming and convective cooling in blood vessels during a high-intensity focused ultrasound thermal ablation. Int J Heat Mass Transf 55:1261–70.
  • Soltani M. (2013). Numerical modeling of drug delivery to solid tumor microvasculature. PhD thesis In: Chem. Eng. (Nanotechnology), Waterloo, Ontario, Canada.
  • Soltani M, Chen P. (2011). Numerical modeling of fluid flow in solid tumors. PLoS One 6:e20344.
  • Soltani M, Chen P. (2013). Numerical modeling of interstitial fluid flow coupled with blood flow through a remodeled solid tumor microvascular network. PLoS One 8:e67025.
  • Soltani M, Moradi Kashkooli F, Souri M, et al. (2021). Enhancing clinical translation of cancer using nanoinformatics. Cancers 13:2481.
  • Soltani M, Souri M, Kashkooli FM. (2021). Effects of hypoxia and nanocarrier size on pH-responsive nano-delivery system to solid tumors. Sci Rep 11:19350.
  • Souri M, Moradi Kashkooli F, Soltani M. (2022). Analysis of magneto-hyperthermia duration in nano-sized drug delivery system to solid tumors using intravascular-triggered thermosensitive-liposome. Pharm Res 39:753–65.
  • Souri M, Soltani M, Kashkooli FM, et al. (2022). Towards principled design of cancer nanomedicine to accelerate clinical translation. Mater Today Bio 13:100208.
  • Souri M, Soltani M, Kashkooli FM, Shahvandi MK. (2022). Engineered strategies to enhance tumor penetration of drug-loaded nanoparticles. J Controlled Release 341:227–46.
  • Souri M, Soltani M, Kashkooli FM. (2021). Computational modeling of thermal combination therapies by magneto-ultrasonic heating to enhance drug delivery to solid tumors. Sci Rep 11:1–12.
  • Stylianopoulos T, Munn LL, Jain RK. (2018). Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside. Trends Cancer 4:292–319.
  • Ten Hagen TL, Dreher MR, Zalba S, et al. (2021). Drug transport kinetics of intravascular triggered drug delivery systems. Commun Biol 4:1–17.
  • Vakoc BJ, Lanning RM, Tyrrell JA, et al. (2009). Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15:1219–23.
  • van der Meel R, Sulheim E, Shi Y, et al. (2019). Smart cancer nanomedicine. Nat Nanotechnol 14:1007–17.
  • Wang X, Wilhelm J, Li W, et al. (2020). Sun, polycarbonate-based ultra-pH sensitive nanoparticles improve therapeutic window. Nat Commun 11:5828.
  • Wong C, Stylianopoulos T, Cui J, et al. (2011). Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci USA 108:2426–31.
  • Wu M, Meng Q, Chen Y, et al. (2014). Ultrasmall confined iron oxide nanoparticle MSNs as a pH‐responsive theranostic platform. Adv Funct Mater 24:4273–83.
  • Xiong X, Xu Z, Huang H, et al. (2020). A NIR light triggered disintegratable nanoplatform for enhanced penetration and chemotherapy in deep tumor tissues. Biomaterials 245:119840.
  • Yang B, Chou J, Dong X, et al. (2017). Size-controlled green synthesis of highly stable and uniform small to ultrasmall gold nanoparticles by controlling reaction steps and pH. J Phys Chem C 121:8961–7.
  • Yong T, Zhang X, Bie N, et al. (2019). Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat Commun 10:3838.
  • Yu M, Zheng J. (2015). Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 9:6655–74.
  • Zhan W, Gedroyc W, Xu XY. (2019). Towards a multiphysics modelling framework for thermosensitive liposomal drug delivery to solid tumour combined with focused ultrasound hyperthermia. Biophys Rep 5:43–59.
  • Zhao Y, Shi C, Yang X, et al. (2016). Yang, pH-and temperature-sensitive hydrogel nanoparticles with dual photoluminescence for bioprobes. ACS Nano 10:5856–63.