3,983
Views
4
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Investigation of enhanced intracellular delivery of nanomaterials modified with novel cell-penetrating zwitterionic peptide-lipid derivatives

, , , , &
Article: 2191891 | Received 29 Dec 2022, Accepted 12 Mar 2023, Published online: 25 Mar 2023

References

  • Asai T, Tsuzuku T, Takahashi S, et al. (2014). Cell-penetrating peptide-conjugated lipid nanoparticles for siRNA delivery. Biochem Biophys Res Commun 444:1–11.
  • Choi ES, Song J, Kang YY, Mok H. (2019). Mannose-modified serum exosomes for the elevated uptake to murine dendritic cells and lymphatic accumulation. Macromol Biosci 19:1900042.
  • Chung I, Reichelt M, Shao L, et al. (2016). High cell-surface density of HER2 deforms cell membranes. Nat Commun 7:12742.
  • Fretz MM, Koning GA, Mastrobattista E, et al. (2004). OVCAR-3 cells internalize TAT-peptide modified liposomes by endocytosis. Biochim Biophys Acta Biomembr 1665:48–56.
  • Furneri PM, Fresta M, Puglisi G, Tempera G. (2000). Ofloxacin-loaded liposomes: in vitro activity and drug accumulation in bacteria. Antimicrob Agents Chemother 44:2458–64.
  • Futaki S, Suzuki T, Ohashi W, et al. (2001). Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–40.
  • Garbuzenko O, Barenholz Y, Priev A. (2005). Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chem Phys Lipids 135:117–29.
  • Idiris A, Alam MT, Ikai A. (2000). Spring mechanics of α-helical polypeptide. Protein Eng 13:763–70.
  • Kamiya M, Matsumoto M, Yamashita K, et al. (2022). Stability study of mRNA-lipid nanoparticles exposed to various conditions based on the evaluation between physicochemical properties and their relation with protein expression ability. Pharmaceutics 14:2357.
  • Kato N, Sato T, Fuchigami Y, et al. (2022). Synthesis and evaluation of a novel adapter lipid derivative for preparation of cyclic peptide-modified PEGylated liposomes: application of cyclic RGD peptide. Eur J Pharm Sci 176:106239.
  • Khalil IA, Kogure K, Futaki S, Harashima H. (2006). High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. J Biol Chem 281:3544–51.
  • Kibria G, Hatakeyama H, Ohga N, et al. (2011). Dual-ligand modification of PEGylated liposomes shows better cell selectivity and efficient gene delivery. J Control Release 153:141–8.
  • Kim MS, Haney MJ, Zhao Y, et al. (2016). Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 12:655–64.
  • Kim WJ, Christensen LV, Jo S, et al. (2006). Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol Ther 14:343–50.
  • Kulkarni JA, Darjuan MM, Mercer JE, et al. (2018). On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano 12:4787–95.
  • Landen CN, Chavez-Reyes A, Bucana C, et al. (2005). Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 65:6910–8.
  • Lin Q, Qu M, Zhou B, et al. (2019). Exosome-like nanoplatform modified with targeting ligand improves anti- cancer and anti-inflammation effects of imperialine. J Control Release 311-312:104–16.
  • Lu L, Ding Y, Zhang Y, et al. (2018). Antibody-modified liposomes for tumor-targeting delivery of timosaponin AIII. Int J Nanomedicine 13:1927–44.
  • Lu M, Zhao X, Xing H, et al. (2018). Comparison of exosome-mimicking liposomes with conventional liposomes for intracellular delivery of siRNA. Int J Pharm 550:100–13.
  • Maeki M, Fujishima Y, Sato Y, et al. (2017). Understanding the formation mechanism of lipid nanoparticles in microfluidic devices with chaotic micromixers. PLoS One 12:e0187962–16.
  • Moghimipour E, Rezaei M, Ramezani Z, et al. (2018). Folic acid-modified liposomal drug delivery strategy for tumor targeting of 5-fluorouracil. Eur J Pharm Sci 114:166–74.
  • Morales-Kastresana A, Clayborne C, Braig Z, et al. (2017). Labeling extracellular vesicles for nanoscale flow cytometry. Sci Rep 7:1878.
  • Mukai H, Ogawa K, Kato N, Kawakami S. (2022). Recent advances in lipid nanoparticles for delivery of nucleic acid, mRNA, and gene editing-based therapeutics. Drug Metab Pharmacokinet 44:100450.
  • Nakase I, Noguchi K, Aoki A, et al. (2017). Arginine-rich cell-penetrating peptide-modified extracellular vesicles for active macropinocytosis induction and efficient intracellular delivery. Sci Rep 7:1991.
  • Ndeupen S, Qin Z, Jacobsen S, et al. (2021). The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. IScience 24:103479.
  • Nowinski AK, Sun F, White AD, et al. (2012). Sequence, structure, and function of peptide self-assembled monolayers. J Am Chem Soc 134:6000–5.
  • Ogawa K, Kato N, Yoshida M, et al. (2022). Focused ultrasound/microbubbles-assisted BBB opening enhances LNP-mediated mRNA delivery to brain. J Control Release 348:34–41.
  • Qin J, Xue L, Gong N, et al. (2022). RGD peptide-based lipids for targeted mRNA delivery and gene editing applications. RSC Adv 12:25397–404.
  • Rayamajhi S, Nguyen TDT, Marasini R, Aryal S. (2019). Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery. Acta Biomater 94:482–94.
  • Rothbard JB, Jessop TC, Lewis RS, et al. (2004). Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J Am Chem Soc 126:9506–7.
  • Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. (1999). In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–72.
  • Song S, Liu D, Peng J, et al. (2009). Novel peptide ligand directs liposomes toward EGF‐R high‐expressing cancer cells in vitro and in vivo. FASEB J 23:1396–404.
  • Suga T, Fuchigami Y, Hagimori M, Kawakami S. (2017). Ligand peptide-grafted PEGylated liposomes using HER2 targeted peptide-lipid derivatives for targeted delivery in breast cancer cells: the effect of serine-glycine repeated peptides as a spacer. Int J Pharm 521:361–4.
  • Suga T, Kato N, Hagimori M, et al. (2018). Development of high-functionality and -quality lipids with RGD peptide ligands: application for PEGylated liposomes and analysis of intratumoral distribution in a murine colon cancer model. Mol Pharm 15:4481–90.
  • Suga T, Watanabe M, Sugimoto Y, et al. (2019). Synthesis of a high functionality and quality lipid with gp130 binding hydrophobic peptide for the preparation of human glioma cell-targeted PEGylated liposomes. J Drug Deliv Sci Technol 49:668–73.
  • Sugimoto Y, Suga T, Kato N, et al. (2022). Microfluidic post-insertion method for the efficient preparation of PEGylated liposomes using high functionality and quality lipids. Int J Nanomedicine 17:6675–86.
  • Zhao J, Qin Z, Wu J, et al. (2018). Zwitterionic stealth peptide-protected gold nanoparticles enable long circulation without the accelerated blood clearance phenomenon. Biomater Sci 6:200–6.
  • Zheng Z, Li Z, Xu C, et al. (2019). Folate-displaying exosome mediated cytosolic delivery of siRNA avoiding endosome trapping. J Control Release 311-312:43–9.
  • Zhigaltsev IV, Belliveau N, Hafez I, et al. (2012). Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir 28:3633–40.
  • Zhu Q, Ling X, Yang Y, et al. (2019). Embryonic stem cells-derived exosomes endowed with targeting properties as chemotherapeutics delivery vehicles for glioblastoma therapy. Adv Sci 6:1801899.