2,768
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Hyaluronic acid-based nanoparticles to deliver drugs to the ocular posterior segment

&
Article: 2204206 | Received 21 Nov 2022, Accepted 08 Feb 2023, Published online: 16 May 2023

References

  • Akbarzadeh A,Rezaei-Sadabady R,Davaran S, et al.(2013). Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:102.
  • Allawadhi P, Singh V, Govindaraj K, et al. (2022). Biomedical applications of polysaccharide nanoparticles for chronic inflammatory disorders: focus on rheumatoid arthritis, diabetes and organ fibrosis. Carbohydr Polym 281:1.
  • Alshaikh RA, Waeber C, Ryan KB. (2022). Polymer based sustained drug delivery to the ocular posterior segment: barriers and future opportunities for the treatment of neovascular pathologies. Adv Drug Deliv Rev 187:114342.
  • Apaolaza PS, Busch M, Asin-Prieto E, et al. (2020). Hyaluronic acid coating of gold nanoparticles for intraocular drug delivery: evaluation of the surface properties and effect on their distribution. Exp Eye Res 198:108151.
  • Apaolaza PS, Del Pozo-Rodríguez A, Solinís MA, et al. (2016). Structural recovery of the retina in a retinoschisin-deficient mouse after gene replacement therapy by solid lipid nanoparticles. Biomaterials 90:40–17.
  • Apaolaza PS, Del Pozo-Rodríguez A, Torrecilla J, et al. (2015). Solid lipid nanoparticle-based vectors intended for the treatment of X-linked juvenile retinoschisis by gene therapy: in vivo approaches in Rs1h-deficient mouse model. J Control Release 217:273–83.
  • Apaolaza PS, Delgado D, del Pozo-Rodríguez A, et al. (2014). A novel gene therapy vector based on hyaluronic acid and solid lipid nanoparticles for ocular diseases. Int J Pharm 465:413–26.
  • Aparajay P, Dev A. (2022). Functionalized niosomes as a smart delivery device in cancer and fungal infection. Eur J Pharm Sci 168:106052.
  • Araie M, Maurice DM. (1991). The loss of fluorescein, fluorescein glucuronide and fluorescein isothiocyanate dextran from the vitreous by the anterior and retinal pathways. Exp Eye Res 52:27–39.
  • Ashrafizadeh M, Mirzaei S, Gholami MH, et al. (2021). Hyaluronic acid-based nanoplatforms for Doxorubicin: a review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydr Polym 272:118491.
  • Ba Fakih F, Shanti A, Stefanini C, et al. (2020). Optimization of gold nanoparticles for efficient delivery of catalase to macrophages for alleviating inflammation. ACS Appl Nano Mater 3:9510–19.
  • Bayat J, Emdad H, Abouali O. (2020). 3D numerical investigation of the fluid mechanics in a partially liquefied vitreous humor due to saccadic eye movement. Comput Biol Med 125:103955.
  • Beack S, Choi JS, Lee JH, et al. (2015). Two-photon microscopy of a Flt1 peptide-hyaluronate conjugate. Nanomedicine (Lond) 10:2315–24.
  • Beck R, Stachs O, Koschmieder A, et al. (2019). Hyaluronic acid as an alternative to autologous human serum eye drops: initial clinical results with high-molecular-weight hyaluronic acid eye drops. Case Rep Ophthalmol 10:244–55.
  • Bharadwaj KK, Rabha B, Pati S, et al. (2021). Green synthesis of gold nanoparticles using plant extracts as beneficial prospect for cancer theranostics. Molecules 26:6389.
  • Bochot A, Fattal E. (2012). Liposomes for intravitreal drug delivery: a state of the art. J Control Release 161:628–34.
  • Bourges J-L, Gautier SE, Delie F, et al. (2003). Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci 44:3562–9.
  • Cabrera FJ, Wang DC, Reddy K, et al. (2019). Challenges and opportunities for drug delivery to the posterior of the eye. Drug Discov Today 24:1679–84.
  • Cai J, Fu J, Li R, et al. (2019). A potential carrier for anti-tumor targeted delivery-hyaluronic acid nanoparticles. Carbohydr Polym 208:356–64.
  • Camelo S, Lajavardi L, Bochot A, et al. (2007). Ocular and systemic bio-distribution of rhodamine-conjugated liposomes loaded with VIP injected into the vitreous of Lewis rats. Mol Vis 13:2263–74.
  • Camelo S, Lajavardi L, Bochot A, et al. (2008). Drainage of fluorescent liposomes from the vitreous to cervical lymph nodes via conjunctival lymphatics. Ophthalmic Res 40:145–50.
  • Chaurasiya A,Gorajiya A,Panchal K, et al.(2022). A review on multivesicular liposomes for pharmaceutical applications: preparation, characterization, and translational challenges. Drug Deliv and Transl Res 12:1569–87.
  • Chen C, Sun W, Wang X, et al. (2018). pH-responsive nanoreservoirs based on hyaluronic acid end-capped mesoporous silica nanoparticles for targeted drug delivery. Int J Biol Macromol 111:1106–15.
  • Chen F, Si P, de la Zerda A, et al. (2021). Gold nanoparticles to enhance ophthalmic imaging. Biomater Sci 9:367–90.
  • Chen L, Fu C, Zhang Q, et al. (2020). The role of CD44 in pathological angiogenesis. FASEB J 34:13125–39.
  • Cho HJ, Yoon IS, Yoon HY, et al. (2012). Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials 33:1190–200.
  • Choi KY, Han HS, Lee ES, et al. (2019). Hyaluronic acid-based activatable nanomaterials for stimuli-responsive imaging and therapeutics: beyond CD44-mediated drug delivery. Adv Mater 31:e1803549.
  • Costa CP,Barreiro S,Moreira JN, et al.(2021). In vitro studies on nasal formulations of nanostructured lipid carriers (NLC) and solid lipid nanoparticles (SLN). Pharmaceuticals 14:711.
  • Crane IJ, Liversidge J. (2008). Mechanisms of leukocyte migration across the blood-retina barrier. Semin Immunopathol 30:165–77.
  • Dai H, Navath RS, Balakrishnan B, et al. (2010). Intrinsic targeting of inflammatory cells in the brain by polyamidoamine dendrimers upon subarachnoid administration. Nanomedicine (Lond) 5:1317–29.
  • Darweesh RS, Ayoub NM, Nazzal S. (2019). Gold nanoparticles and angiogenesis: molecular mechanisms and biomedical applications. Int J Nanomedicine 14:7643–63.
  • Del Amo EM, Rimpelä AK, Heikkinen E, et al. (2017). Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res 57:134–85.
  • Del Amo EM, Urtti A. (2015). Rabbit as an animal model for intravitreal pharmacokinetics: clinical predictability and quality of the published data. Exp Eye Res 137:111–24.
  • Del Amo EM, Vellonen K-S, Kidron H, et al. (2015). Intravitreal clearance and volume of distribution of compounds in rabbits: In silico prediction and pharmacokinetic simulations for drug development. Eur J Pharm Biopharm 95:215–26.
  • Devoldere J, Wels M, Peynshaert K, et al. (2019). The obstacle course to the inner retina: hyaluronic acid-coated lipoplexes cross the vitreous but fail to overcome the inner limiting membrane. Eur J Pharm Biopharm 141:161–71.
  • Di Bella D, Ferreira JPS, Silva RdNO, et al. (2021). Gold nanoparticles reduce inflammation in cerebral microvessels of mice with sepsis. J Nanobiotechnology 19:52.
  • Dromel PC, Singh D, Andres E, et al. (2021). A bioinspired gelatin-hyaluronic acid-based hybrid interpenetrating network for the enhancement of retinal ganglion cells replacement therapy. NPJ Regen Med 6:85.
  • Ferroni M, Cereda MG, Boschetti F. (2018). A combined approach for the analysis of ocular fluid dynamics in the presence of saccadic movements. Ann Biomed Eng 46:2091–101.
  • Gallo N, Nasser H, Salvatore L, et al. (2019). Hyaluronic acid for advanced therapies: promises and challenges. Eur Polym J 117:134–47.
  • Gan L, Wang J, Zhao Y, et al. (2013). Hyaluronan-modified core-shell liponanoparticles targeting CD44-positive retinal pigment epithelium cells via intravitreal injection. Biomaterials 34:5978–87.
  • Gao C, Gong W, Yang M, et al. (2020). T807-modified human serum albumin biomimetic nanoparticles for targeted drug delivery across the blood–brain barrier. J Drug Target 28:1085–95.
  • Garantziotis S, Savani RC. (2019). Hyaluronan biology: a complex balancing act of structure, function, location and context. Matrix Biol 78-79:1–10.
  • Ghazaryan A, Landfester K, Mailänder V. (2019). Protein deglycosylation can drastically affect the cellular uptake. Nanoscale 11:10727–37.
  • Ghosh B, Biswas S. (2021). Polymeric micelles in cancer therapy: state of the art. J Control Release 332:127–47.
  • González-Fernández FM, Bianchera A, Gasco P, et al. (2021). Lipid-based nanocarriers for ophthalmic administration: towards experimental design implementation. Pharmaceutics 13:447.
  • Gote V,Ansong M,Pal D. (2020). Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin Drug Metab Toxicol 16:885–906.
  • Graça MFP, Miguel SP, Cabral CSD, et al. (2020). Hyaluronic acid-based wound dressings: a review. Carbohydr Polym 241:116364.
  • Gu HF, Ren F, Mao XY, et al. (2021). Mineralized and GSH-responsive hyaluronic acid based nano-carriers for potentiating repressive effects of sulforaphane on breast cancer stem cells-like properties. Carbohydr Polym 269:118294.
  • Guter M, Breunig M. (2017). Hyaluronan as a promising excipient for ocular drug delivery. Eur J Pharm Biopharm 113:34–49.
  • Han W, Lv Y, Sun Y, et al. (2022). The anti-inflammatory activity of specific-sized hyaluronic acid oligosaccharides. Carbohydr Polym 276:118699.
  • Heldin P, Kolliopoulos C, Lin C-Y, et al. (2020). Involvement of hyaluronan and CD44 in cancer and viral infections. Cell Signal 65:109427.
  • Hong M, Zhu S, Jiang Y, et al. (2009). Efficient tumor targeting of hydroxycamptothecin loaded PEGylated niosomes modified with transferrin. J Control Release 133:96–102.
  • Hou X, Zhong D, Chen H, et al. (2022). Recent advances in hyaluronic acid-based nanomedicines: preparation and application in cancer therapy. Carbohydr Polym 292:119662.
  • Hu C, Cun X, Ruan S, et al. (2018). Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy. Biomaterials 168:64–75.
  • Hu Y, Chen X, Xu Y, et al. (2019). Hierarchical assembly of hyaluronan coated albumin nanoparticles for pancreatic cancer chemoimmunotherapy. Nanoscale 11:16476–87.
  • Huang D, Chen Y-S, Green CR, et al. (2018). Hyaluronic acid coated albumin nanoparticles for targeted peptide delivery in the treatment of retinal ischaemia. Biomaterials 168:10–23.
  • Huang D, Chen YS, Rupenthal ID. (2017). Hyaluronic acid coated albumin nanoparticles for targeted peptide delivery to the retina. Mol Pharm 14:533–45.
  • Huang X,Chau Y. (2019a). Investigating impacts of surface charge on intraocular distribution of intravitreal lipid nanoparticles. Exp Eye Res 186:107711.
  • Huang X, Chau Y. (2019b). Intravitreal nanoparticles for retinal delivery. Drug Discov Today 24:1510–23.
  • Huang W, Xiao G, Zhang Y, et al. (2021). Research progress and application opportunities of nanoparticle–protein corona complexes. Biomed Pharmacother 139:111541.
  • Hynnekleiv L, Magno M, Vernhardsdottir RR, et al. (2022). Hyaluronic acid in the treatment of dry eye disease. Acta Ophthalmol 100:844–60.
  • Iezzi R, Guru BR, Glybina IV, et al. (2012). Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials 33:979–88.
  • Jackson TL, Antcliff RJ, Hillenkamp J, et al. (2003). Human retinal molecular weight exclusion limit and estimate of species variation. Invest Ophthalmol Vis Sci 44:2141–6.
  • Ji Y, Li J, Zhao J, et al. (2019). A light-facilitated drug delivery system from a pseudo-protein/hyaluronic acid nanocomplex with improved anti-tumor effects. Nanoscale 11:9987–10003.
  • Jiang L, Liu G, Liu H, et al. (2018). Molecular weight impact on the mechanical forces between hyaluronan and its receptor. Carbohydr Polym 197:326–36.
  • Jo DH, Kim JH, Son JG, et al. (2016). Nanoparticle-protein complexes mimicking corona formation in ocular environment. Biomaterials 109:23–31.
  • Jung H. (2020). Hyaluronidase: an overview of its properties, applications, and side effects. Arch Plast Surg 47:297–300.
  • Junnuthula V, Sadeghi Boroujeni A, Cao S, et al. (2021). Intravitreal polymeric nanocarriers with long ocular retention and targeted delivery to the retina and optic nerve head region. Pharmaceutics 13:445.
  • Kambhampati SP, Clunies-Ross AJM, Bhutto I, et al. (2015). Systemic and intravitreal delivery of dendrimers to activated microglia/macrophage in ischemia/reperfusion mouse retina. Invest Ophthalmol Vis Sci 56:4413–24.
  • Kari OK, Tavakoli S, Parkkila P, et al. (2020). Light-activated liposomes coated with hyaluronic acid as a potential drug delivery system. Pharmaceutics 12:763.
  • Karthikeyan B, Kalishwaralal K, Sheikpranbabu S, et al. (2010). Gold nanoparticles downregulate VEGF-and IL-1β-induced cell proliferation through Src kinase in retinal pigment epithelial cells. Exp Eye Res 91:769–78.
  • Ke PC, Lin S, Parak WJ, et al. (2017). A decade of the protein corona. ACS Nano 11:11773–6.
  • Kelly PM, Åberg C, Polo E, et al. (2015). Mapping protein binding sites on the biomolecular corona of nanoparticles. Nat Nanotechnol 10:472–9.
  • Khosa A, Reddi S, Saha RN. (2018). Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother 103:598–613.
  • Kim H, Robinson SB, Csaky KG. (2009). Investigating the movement of intravitreal human serum albumin nanoparticles in the vitreous and retina. Pharm Res 26:329–37.
  • Kim HM, Han H, Hong HK, et al. (2021). Permeability of the retina and RPE-choroid-sclera to three ophthalmic drugs and the associated factors. Pharmaceutics 13:655.
  • Kim HM, Park KH, Chung JY, et al. (2020). A prediction model for the intraocular pharmacokinetics of intravitreally injected drugs based on molecular physicochemical properties. Ophthalmic Res 63:41–9.
  • Kim JH, Kim MH, Jo DH, et al. (2011). The inhibition of retinal neovascularization by gold nanoparticles via suppression of VEGFR-2 activation. Biomaterials 32:1865–71.
  • Kleinman ME, Yamada K, Takeda A, et al. (2008). Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452:591–7.
  • Koo H, Moon H, Han H, et al. (2012). The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection. Biomaterials 33:3485–93.
  • Kosuge H, Nakamura M, Oyane A, et al. (2022). Potential of gold nanoparticles for noninvasive imaging and therapy for vascular inflammation. Mol Imaging Biol 24:692–9.
  • Lajavardi L, Bochot A, Camelo S, et al. (2007). Downregulation of endotoxin-induced uveitis by intravitreal injection of vasoactive intestinal Peptide encapsulated in liposomes. Invest Ophthalmol Vis Sci 48:3230–8.
  • Lambiase A, Sullivan BD, Schmidt TA, et al. (2017). A two-week, randomized, double-masked study to evaluate safety and efficacy of lubricin (150 μg/mL) eye drops versus sodium hyaluronate (HA) 0.18% eye drops (Vismed®) in patients with moderate dry eye disease. Ocul Surf 15:77–87.
  • Laradji A, Karakocak BB, Kolesnikov AV, et al. (2021). Hyaluronic acid-based gold nanoparticles for the topical delivery of therapeutics to the retina and the retinal pigment epithelium. Polymers 13:3324.
  • Lee J, Ryoo NK, Han H, et al. (2016). Anti-VEGF polysiRNA polyplex for the treatment of choroidal neovascularization. Mol Pharm 13:1988–95.
  • Lee S-E, Lee CD, Ahn JB, et al. (2019). Hyaluronic acid-coated solid lipid nanoparticles to overcome drug-resistance in tumor cells. J Drug Deliv Sci Technol 50:365–71.
  • Lee WT, Lee J, Kim H, et al. (2021). Photoreactive-proton-generating hyaluronidase/albumin nanoparticles-loaded PEG-hydrogel enhances antitumor efficacy and disruption of the hyaluronic acid extracellular matrix in AsPC-1 tumors. Mater Today Bio 12:100164.
  • Lei C, Liu X-R, Chen Q-B, et al. (2021). Hyaluronic acid and albumin based nanoparticles for drug delivery. J Control Release 331:416–33.
  • Li M,Sun J,Zhang W, et al.(2021). Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy. Carbohydr Polym 251:117103.
  • Li Q,Qian X,Li HY, et al.(2021). Safety assessment of polymeric micelles as an ophthalmic drug delivery system for intravitreal administration of dasatinib. Int. J. Pharm. 596:120226.
  • Li Q,Weng J,Wong SN, et al.(2021). Nanoparticulate Drug Delivery to the Retina. Mol Pharm 18:506–21.
  • Li W, Zhou C, Fu Y, et al. (2020). Targeted delivery of hyaluronic acid nanomicelles to hepatic stellate cells in hepatic fibrosis rats. Acta Pharm Sin B 10:693–710.
  • Liang Z, Cao C, Gao J, et al. (2022). Gold nanorods@mesoporous SiO2@hyaluronic acid core–shell nanoparticles for controlled drug delivery. ACS Appl Nano Mater 5:7440–8.
  • Liu D, Zhang Q, Wang J, et al. (2021). Inhibition of growth and metastasis of breast cancer by targeted delivery of 17-hydroxy-jolkinolide B via hyaluronic acid-coated liposomes. Carbohydr Polym 257:117572.
  • Liu R, Hu C, Yang Y, et al. (2019). Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharm Sin B 9:410–20.
  • Lou X, Hu Y, Zhang H, et al. (2021). Polydopamine nanoparticles attenuate retina ganglion cell degeneration and restore visual function after optic nerve injury. J Nanobiotechnology 19:436.
  • Lu B, Xiao F, Wang Z, et al. (2020). Redox-sensitive hyaluronic acid polymer prodrug nanoparticles for enhancing intracellular drug self-delivery and targeted cancer therapy. ACS Biomater Sci Eng 6:4106–15.
  • Mann BK, Stirland DL, Lee HK, et al. (2018). Ocular translational science: a review of development steps and paths. Adv Drug Deliv Rev 126:195–203.
  • Mannermaa E, Reinisalo M, Ranta V-P, et al. (2010). Filter-cultured ARPE-19 cells as outer blood–retinal barrier model. Eur J Pharm Sci 40:289–96.
  • Martens TF, Peynshaert K, Nascimento TL, et al. (2017). Effect of hyaluronic acid-binding to lipoplexes on intravitreal drug delivery for retinal gene therapy. Eur J Pharm Sci 103:27–35.
  • Martens TF, Remaut K, Deschout H, et al. (2015). Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy. J Control Release 202:83–92.
  • Martens TF, Vercauteren D, Forier K, et al. (2013). Measuring the intravitreal mobility of nanomedicines with single-particle tracking microscopy. Nanomedicine (Lond) 8:1955–68.
  • Masse F, Ouellette M, Lamoureux G, et al. (2019). Gold nanoparticles in ophthalmology. Med Res Rev 39:302–27.
  • Mayol L, Silvestri T, Fusco S, et al. (2019). Drug micro-carriers with a hyaluronic acid corona toward a diffusion-limited aggregation within the vitreous body. Carbohydr Polym 220:185–90.
  • McCarrick S, Midander K, Krausová M, et al. (2021). Gold nanoparticles dissolve extracellularly in the presence of human macrophages. Int J Nanomed 16:5895–908.
  • Meza-Rios A, Navarro-Partida J, Armendariz-Borunda J, et al. (2020). Therapies based on nanoparticles for eye drug delivery. Ophthalmol Ther 9:1–14.
  • Mishra RK, Ahmad A, Vyawahare A, et al. (2021). Biological effects of formation of protein corona onto nanoparticles. Int J Biol Macromol 175:1–18.
  • Monslow J, Govindaraju P, Pure E. (2015). Hyaluronan – a functional and structural sweet spot in the tissue microenvironment. Front Immunol 6:231.
  • Navarro-Partida J,Castro-Castaneda CR,Santa Cruz-Pavlovich FJ, et al.(2021). Lipid-based nanocarriers as topical drug delivery systems for intraocular diseases. Pharmaceutics 13:678.
  • Nayak K, Misra M. (2018). A review on recent drug delivery systems for posterior segment of eye. Biomed Pharmacother 107:1564–82.
  • Nishihara H. (1991). Studies on the ultrastructure of the inner limiting membrane of the retina – distribution of anionic sites in the inner limiting membrane of the retina. Nippon Ganka Gakkai Zasshi 95:951–8.
  • Park J, Bungay PM, Lutz RJ, et al. (2005). Evaluation of coupled convective–diffusive transport of drugs administered by intravitreal injection and controlled release implant. J Control Release 105:279–95.
  • Patel D, Patel SN, Chaudhary V, et al. (2022). Complications of intravitreal injections: 2022. Curr Opin Ophthalmol 33:137–46.
  • Patil S, Gao Y-G, Lin X, et al. (2019). The development of functional non-viral vectors for gene delivery. Int J Mol Sci 20:5491.
  • Pereira DV, Petronilho F, Pereira HR, et al. (2012). Effects of gold nanoparticles on endotoxin-induced uveitis in rats. Invest Ophthalmol Vis Sci 53:8036–41.
  • Perumal OP, Inapagolla R, Kannan S, et al. (2008). The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials 29:3469–76.
  • Peynshaert K, Devoldere J, De Smedt SC, et al. (2018). In vitro and ex vivo models to study drug delivery barriers in the posterior segment of the eye. Adv Drug Deliv Rev 126:44–57.
  • Peynshaert K, Devoldere J, Forster V, et al. (2017). Toward smart design of retinal drug carriers: a novel bovine retinal explant model to study the barrier role of the vitreoretinal interface. Drug Deliv 24:1384–94.
  • Peynshaert K, Devoldere J, Minnaert AK, et al. (2019). Morphology and composition of the inner limiting membrane: species-specific variations and relevance toward drug delivery research. Curr Eye Res 44:465–75.
  • Piazzini V, Landucci E, D’Ambrosio M, et al. (2019). Chitosan coated human serum albumin nanoparticles: A promising strategy for nose-to-brain drug delivery. Int J Biol Macromol 129:267–80.
  • Qhattal HS, Liu X. (2011). Characterization of CD44-mediated cancer cell uptake and intracellular distribution of hyaluronan-grafted liposomes. Mol Pharm 8:1233–46.
  • Qin C, Wen S, Zhu S, et al. (2020). Are poly(amidoamine) dendrimers safe for ocular applications? Toxicological evaluation in ocular cells and tissues. J Ocul Pharmacol Ther 36:715–24.
  • Qin Y, Tian Y, Liu Y, et al. (2018). Hyaluronic acid-modified cationic niosomes for ocular gene delivery: improving transfection efficiency in retinal pigment epithelium. J Pharm Pharmacol 70:1139–51.
  • Ramsay E, Hagström M, Vellonen KS, et al. (2019). Role of retinal pigment epithelium permeability in drug transfer between posterior eye segment and systemic blood circulation. Eur J Pharm Biopharm 143:18–23.
  • Rezaie Amale F, Ferdowsian S, Hajrasouliha S, et al. (2021). Gold nanoparticles loaded into niosomes: A novel approach for enhanced antitumor activity against human ovarian cancer. Adv Powder Technol 32:4711–22.
  • Rodríguez-Acosta GL,Hernández-Montalbán C,Vega-Razo MFS, et al.(2021). Nanomedical applications of amphiphilic dendrimeric micelles. Curr Med Chem 28:7937–60.
  • Roh YJ, Rho CR, Cho WK, et al. (2016). The antiangiogenic effects of gold nanoparticles on experimental choroidal neovascularization in mice. Invest Ophthalmol Vis Sci 57: 6561–7.
  • Sadeghi A, Ruponen M, Puranen J, et al. (2022). Imaging, quantitation and kinetic modelling of intravitreal nanomaterials. Int J Pharm 621:121800.
  • Sakurai Y, Harashima H. (2019). Hyaluronan-modified nanoparticles for tumor-targeting. Expert Opin Drug Deliv 16:915–36.
  • Samuelsson C, Gustafson S. (1998). Studies on the interaction between hyaluronan and a rat colon cancer cell line. Glycoconj J 15:169–75.
  • Santana-Armas ML, Tros de Ilarduya C. (2021). Strategies for cancer gene-delivery improvement by non-viral vectors. Int J Pharm 596:120291.
  • Sathe RY,Bharatam PV. (2022). Drug-dendrimer complexes and conjugates: detailed furtherance through theory and experiments. Adv. Colloid Interface Sci. 303:102639.
  • Schwartz DM, Shuster S, Jumper MD, et al. (1996). Human vitreous hyaluronidase: isolation and characterization. Curr Eye Res 15:1156–62.
  • Singh R, Batoki JC, Ali M, et al. (2020). Inhibition of choroidal neovascularization by systemic delivery of gold nanoparticles. Nanomedicine 28:102205.
  • Skalickova S, Horky P, Mlejnkova V, et al. (2021). Theranostic approach for the protein corona of polysaccharide nanoparticles. Chem Rec 21:17–28.
  • Stay MS, Xu J, Randolph TW, et al. (2003). Computer simulation of convective and diffusive transport of controlled-release drugs in the vitreous humor. Pharm Res 20:96–102.
  • Stern R, Asari AA, Sugahara KN. (2006). Hyaluronan fragments: an information-rich system. Eur J Cell Biol 85:699–715.
  • Suñé-Pou M, Limeres MJ, Nofrerias I, et al. (2019). Improved synthesis and characterization of cholesteryl oleate-loaded cationic solid lipid nanoparticles with high transfection efficiency for gene therapy applications. Colloids Surf B Biointerfaces 180:159–67.
  • Taléns-Visconti R, Díez-Sales O, de Julián-Ortiz JV, et al. (2022). Nanoliposomes in cancer therapy: marketed products and current clinical trials. Int J Mol Sci 23:4249.
  • Tan G, Liu D, Zhu R, et al. (2021). A core-shell nanoplatform as a nonviral vector for targeted delivery of genes to the retina. Acta Biomater 134:605–20.
  • Tavakoli S, Kari OK, Turunen T, et al. (2021). Diffusion and protein corona formation of lipid-based nanoparticles in the vitreous humor: profiling and pharmacokinetic considerations. Mol Pharm 18:699–713.
  • Tram NK, Maxwell CJ, Swindle-Reilly KE. (2021). Macro- and microscale properties of the vitreous humor to inform substitute design and intravitreal biotransport. Curr Eye Res 46:429–44.
  • Valachová K, Šoltés L. (2021). Hyaluronan as a prominent biomolecule with numerous applications in medicine. Int J Mol Sci 22:7077.
  • Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, et al. (2020). Drug delivery to the posterior segment of the eye: biopharmaceutic and pharmacokinetic considerations. Pharmaceutics 12:269.
  • Verma A, Tiwari A, Saraf S, et al. (2021). Emerging potential of niosomes in ocular delivery. Expert Opin Drug Deliv 18:55–71.
  • Vidaurre-Agut C, Rivero-Buceta E, Romaní-Cubells E, et al. (2019). Protein corona over mesoporous silica nanoparticles: influence of the pore diameter on competitive adsorption and application to prostate cancer diagnostics. ACS Omega 4:8852–61.
  • Wang S,Chi J,Jiang Z, et al.(2021). A self-healing and injectable hydrogel based on water-soluble chitosan and hyaluronic acid for vitreous substitute. Carbohydr Polym 256:117519.
  • Wang W,Zhang X,Li Z, et al.(2021). Dendronized hyaluronic acid-docetaxel conjugate as a stimuli-responsive nano-agent for breast cancer therapy. Carbohydr Polym 267:118160.
  • Wang R,Gao Y,Liu A,Zhai G. (2021). A review of nanocarrier-mediated drug delivery systems for posterior segment eye disease: challenges analysis and recent advances. J. Drug Targeting. 29:687–702.
  • Wang C, Chen B, He M, et al. (2021). Composition of intracellular protein corona around nanoparticles during internalization. ACS Nano 15:3108–22.
  • Wei D, Pu N, Li SY, et al. (2023). Application of iontophoresis in ophthalmic practice: an innovative strategy to deliver drugs into the eye. Drug Deliv 30:2165736.
  • Wolny PM, Banerji S, Gounou C, et al. (2010). Analysis of CD44-hyaluronan interactions in an artificial membrane system: insights into the distinct binding properties of high and low molecular weight hyaluronan. J Biol Chem 285:30170–80.
  • Wu W,He Z,Zhang Z, et al.(2016). Intravitreal injection of rapamycin-loaded polymeric micelles for inhibition of ocular inflammation in rat model. Int J Pharm 513:238–46.
  • Xie L, Yue W, Ibrahim K, et al. (2021). A long-acting curcumin nanoparticle/in situ hydrogel composite for the treatment of uveal melanoma. Pharmaceutics 13:1335.
  • Xu Q, Boylan NJ, Suk JS, et al. (2013). Nanoparticle diffusion in, and microrheology of, the bovine vitreous ex vivo. J Control Release 167:76–84.
  • Yan Y,Liu X-Y,Lu A, et al.(2022). Non-viral vectors for RNA delivery. J Control Release 342:241–79.
  • Yan K,Feng Y, Gao K, et  al.(2022).  Fabrication of hyaluronic acid-based micelles with glutathione-responsiveness for targeted anticancer drug delivery. J Colloid  Interface Sci 606:1586–96.
  • Yan K, Feng Y, Gao K, et al. (2022). Fabrication of hyaluronic acid-based micelles with glutathione-responsiveness for targeted anticancer drug delivery. J Colloid Interface Sci 606:1586–96.
  • Yan X, Chen Q, An J, et al. (2019). Hyaluronic acid/PEGylated amphiphilic nanoparticles for pursuit of selective intracellular doxorubicin release. J Mater Chem B 7:95–102.
  • Yang H, Liu T, Xu Y, et al. (2021). Protein corona precoating on redox-responsive chitosan-based nano-carriers for improving the therapeutic effect of nucleic acid drugs. Carbohydr Polym 265:118071.
  • Yasamineh S,Yasamineh P,Ghafouri Kalajahi H, et al.(2022). A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system. Int J Pharm 624:121878.
  • Yesilyurt GA, Cark O, Bostanci A, et al. (2022). Effects of inhibition of Wnt/beta-catenin pathway on Amacrine and Muller cells in retinas of zebrafish embryos at different development stages. Acta Ophthalmo 100.
  • Yu Q, Zhao L, Guo C, et al. (2020). Regulating protein corona formation and dynamic protein exchange by controlling nanoparticle hydrophobicity. Front Bioeng Biotechnol 8:210.
  • Zhang X,Ren X,Tang J, et al.(2020). Hyaluronic acid reduction-sensitive polymeric micelles achieving co-delivery of tumor-targeting paclitaxel/apatinib effectively reverse cancer multidrug resistance. Drug Deliv 27:825–35.
  • Zhang X,Pan J,Yao M, et al.(2020). Charge reversible hyaluronic acid-modified dendrimer-based nanoparticles for siMDR-1 and doxorubicin co-delivery. Eur J Pharm Biopharm 154:43–9.
  • Zhang H,Rombouts K,Raes L, et al.(2020). Fluorescence‐Based Quantification of Messenger RNA and Plasmid DNA Decay Kinetics in Extracellular Biological Fluids and Cell Extracts. Adv Biosys 4:2000057.
  • Zhang X, Wei D, Xu Y, et al. (2021). Hyaluronic acid in ocular drug delivery. Carbohydr Polym 264:118006.
  • Zhao X, Seah I, Xue K, et al. (2022). Antiangiogenic nanomicelles for the topical delivery of aflibercept to treat retinal neovascular disease. Adv Mater 34:e2108360.