3,299
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Therapeutic applications of contact lens-based drug delivery systems in ophthalmic diseases

, , , , ORCID Icon &
Article: 2219419 | Received 14 Feb 2023, Accepted 15 May 2023, Published online: 02 Jun 2023

References

  • Akbari E, Imani R, Shokrollahi P, et al. (2021). Preparation of nanoparticle-containing ring-implanted poly(vinyl alcohol) contact lens for sustained release of hyaluronic acid. Macromol Biosci 21:1.
  • Akhter MH, Ahmad I, Alshahrani MY, et al. (2022). Drug delivery challenges and current progress in nanocarrier-based ocular therapeutic system. Gels 8:82.
  • Ali J, Fazil M, Qumbar M, et al. (2016). Colloidal drug delivery system: amplify the ocular delivery. Drug Deliv 23:710–14.
  • Alvarez-Rivera F, Concheiro A, Alvarez-Lorenzo C. (2018). Epalrestat-loaded silicone hydrogels as contact lenses to address diabetic-eye complications. Eur J Pharm Biopharm 122:126–36.
  • Anirudhan TS, Nair AS, Parvathy J. (2016). Extended wear therapeutic contact lens fabricated from timolol imprinted carboxymethyl chitosan-g-hydroxy ethyl methacrylate-g-poly acrylamide as a onetime medication for glaucoma. Eur J Pharm Biopharm 109:61–71.
  • Aouak T, Saeed WS, Al-Hafi NM, et al. (2019). Poly (2-hydroxyethylmethacrylate -co-methylmethacrylate)/lignocaine contact lens preparation, characterization, and in vitro release dynamic. Polymers 11:917.
  • Aref AA. (2017). Sustained drug delivery for glaucoma: current data and future trends. Curr Opin Ophthalmol 28:169–74.
  • Awwad S, Mohamed Ahmed AHA, Sharma G, et al. (2017). Principles of pharmacology in the eye. Br J Pharmacol 174:4205–23.
  • Badawy AR, Hassan MU, Elsherif M, et al. (2018). Contact lenses for color blindness. Adv Healthc Mater 7:e1800152.
  • Baranowski P, Karolewicz B, Gajda M, et al. (2014). Ophthalmic drug dosage forms: characterisation and research methods. ScientificWorldJournal 2014:861904.
  • Bavinger JC, DeLoss K, Mian SI. (2015). Scleral lens use in dry eye syndrome. Curr Opin Ophthalmol 26:319–24.
  • Behl G, Iqbal J, O’Reilly NJ, et al. (2016). Synthesis and characterization of poly(2-hydroxyethylmethacrylate) contact lenses containing chitosan nanoparticles as an ocular delivery system for dexamethasone sodium phosphate. Pharm Res 33:1638–48.
  • Bengani LC, Chauhan A. (2013). Extended delivery of an anionic drug by contact lens loaded with a cationic surfactant. Biomaterials 34:2814–21.
  • Bengani LC, Hsu KH, Gause S, et al. (2013). Contact lenses as a platform for ocular drug delivery. Expert Opin Drug Deliv 10:1483–96.
  • Bengani LC, Kobashi H, Ross AE, et al. (2020). Steroid-eluting contact lenses for corneal and intraocular inflammation. Acta Biomater 116:149–61.
  • Biswas S, Gaviria M, Malheiro L, et al. (2018). Latest clinical approaches in the ocular management of cystinosis: a review of current practice and opinion from the ophthalmology cystinosis forum. Ophthalmol Ther 7:307–22.
  • Braga ME, Yañez F, Alvarez-Lorenzo C, et al. (2010). Improved drug loading/release capacities of commercial contact lenses obtained by supercritical fluid assisted molecular imprinting methods. J Control Release 148:e102–e104.
  • Braga ME, Costa VP, Pereira MJ, et al. (2011). Effects of operational conditions on the supercritical solvent impregnation of acetazolamide in Balafilcon A commercial contact lenses. Int J Pharm 420:231–43.
  • Brown L, Leck AK, Gichangi M, et al. (2021). The global incidence and diagnosis of fungal keratitis. Lancet Infect Dis 21:e49–e57.
  • Carreira AS, Ferreira P, Ribeiro MP, et al. (2014). New drug-eluting lenses to be applied as bandages after keratoprosthesis implantation. Int J Pharm 477:218–26.
  • Carvalho IM, Marques CS, Oliveira RS, et al. (2015). Sustained drug release by contact lenses for glaucoma treatment-a review. J Control Release 202:76–82.
  • Castro-Balado A, Mondelo-García C, Varela-Rey I, et al. (2020). Recent research in ocular cystinosis: drug delivery systems, cysteamine detection methods and future perspectives. Pharmaceutics 12:1177.
  • Choi K, Park HG. (2017). Smart reinvention of the contact lens with graphene. ACS Nano 11:5223–6.
  • Choi SW, Cha BG, Kim J. (2020). Therapeutic contact lens for scavenging excessive reactive oxygen species on the ocular surface. ACS Nano 14:2483–96.
  • Ciolino JB, Hudson SP, Mobbs AN, et al. (2011). A prototype antifungal contact lens. Invest Ophthalmol Vis Sci 52:6286–91.
  • Ciolino JB, Stefanescu CF, Ross AE, et al. (2014). In vivo performance of a drug-eluting contact lens to treat glaucoma for a month. Biomaterials 35:432–9.
  • Ciolino JB, Ross AE, Tulsan R, et al. (2016). Latanoprost-eluting contact lenses in glaucomatous monkeys. Ophthalmology 123:2085–92.
  • Ciralsky JB, Chapman KO, Rosenblatt MI, et al. (2015). Treatment of refractory persistent corneal epithelial defects: a standardized approach using continuous wear PROSE therapy. Ocul Immunol Inflamm 23:219–24.
  • Danion A, Arsenault I, Vermette P. (2007). Antibacterial activity of contact lenses bearing surface-immobilized layers of intact liposomes loaded with levofloxacin. J Pharm Sci 96:2350–63.
  • Das S, Garg P, Mullick R, et al. (2020). Keratitis following laser refractive surgery: clinical spectrum, prevention and management. Indian J Ophthalmol 68:2813–8.
  • Daza JHU, Righetto GM, Chaud MV, et al. (2020). PVA/anionic collagen membranes as drug carriers of ciprofloxacin hydrochloride with sustained antibacterial activity and potential use in the treatment of ulcerative keratitis. J Biomater Appl 35:301–12.
  • Dennyson Savariraj A, Salih A, Alam F, et al. (2021). Ophthalmic sensors and drug delivery. ACS Sens 6:2046–76.
  • Dhillon HK, Bahadur H, Raj A. (2020). A comparative study of tarsorrhaphy and amniotic membrane transplantation in the healing of persistent corneal epithelial defects. Indian J Ophthalmol 68:29–33.
  • Diaz-Palomera CD, Vidal-Paredes IA, Navarro-Partida J, et al. (2022). Topical pirfenidone-loaded liposomes ophthalmic formulation reduces haze development after corneal alkali burn in mice. Pharmaceutics 14:316.
  • DiPasquale SA, Wuchte LD, Mosley RJ, et al. (2022). One week sustained in vivo therapeutic release and safety of novel extended-wear silicone hydrogel contact lenses. Adv Healthc Mater 11:e2101263.
  • Dixon P, Ghosh T, Mondal K, et al. (2018). Controlled delivery of pirfenidone through vitamin E-loaded contact lens ameliorates corneal inflammation. Drug Deliv Transl Res 8:1114–26.
  • Dixon P, Chauhan A. (2019). Carbon black tinted contact lenses for reduction of photophobia in cystinosis patients. Curr Eye Res 44:497–504.
  • Durand ML, Barshak MB, Chodosh J. (2021). Infectious keratitis in 2021. JAMA 326:1319–20.
  • Dutta D, Cole N, Kumar N, et al. (2013). Broad spectrum antimicrobial activity of melimine covalently bound to contact lenses. Invest Ophthalmol Vis Sci 54:175–82.
  • Dutta D, Ozkan J, Willcox MD. (2014). Biocompatibility of antimicrobial melimine lenses: rabbit and human studies. Optom Vis Sci 91:570–81.
  • Dutta D, Vijay AK, Kumar N, et al. (2016). Melimine-coated antimicrobial contact lenses reduce microbial keratitis in an animal model. Invest Ophthalmol Vis Sci 57:5616–24.
  • Dutta D, Kamphuis B, Ozcelik B, et al. (2018). Development of silicone hydrogel antimicrobial contact lenses with Mel4 peptide coating. Optom Vis Sci 95:937–46.
  • Edwards G, Olson CG, Euritt CP, et al. (2022). Molecular mechanisms underlying the therapeutic role of vitamin E in age-related macular degeneration. Front Neurosci 16:890021.
  • Elsherif M, Hassan MU, Yetisen AK, et al. (2018). Wearable contact lens biosensors for continuous glucose monitoring using smartphones. ACS Nano 12:5452–62.
  • Elsherif M, Alam F, Salih AE, et al. (2021). Wearable bifocal contact lens for continual glucose monitoring integrated with smartphone readers. Small 17:e2102876.
  • Fanselow N, Sirajuddin N, Yin XT, et al. (2021). Acanthamoeba keratitis, pathology, diagnosis and treatment. Pathogens 10:323.
  • Farandos NM, Yetisen AK, Monteiro MJ, et al. (2015). Contact lens sensors in ocular diagnostics. Adv Healthc Mater 4:792–810.
  • Fernandes M, Vira D, Medikonda R, et al. (2016). Extensively and pan-drug resistant pseudomonas aeruginosa keratitis: clinical features, risk factors, and outcome. Graefes Arch Clin Exp Ophthalmol 254:315–22.
  • Franco P, De Marco I. (2021). Contact lenses as ophthalmic drug delivery systems: a review. Polymers 13:1102.
  • Gallagher AG, Alorabi JA, Wellings DA, et al. (2016). A novel peptide hydrogel for an antimicrobial bandage contact lens. Adv Healthc Mater 5:2013–8.
  • García-Fernández MJ, Tabary N, Martel B, et al. (2013). Poly-(cyclo)dextrins as ethoxzolamide carriers in ophthalmic solutions and in contact lenses. Carbohydr Polym 98:1343–52.
  • Glisoni RJ, García-Fernández MJ, Pino M, et al. (2013). β-Cyclodextrin hydrogels for the ocular release of antibacterial thiosemicarbazones. Carbohydr Polym 93:449–57.
  • Gote V, Sikder S, Sicotte J, et al. (2019). Ocular drug delivery: present innovations and future challenges. J Pharmacol Exp Ther 370:602–24.
  • Gurnani B, Kaur K. (2022). Bacterial keratitis. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
  • Hennessy AL, Katz J, Covert D, et al. (2010). Videotaped evaluation of eyedrop instillation in glaucoma patients with visual impairment or moderate to severe visual field loss. Ophthalmology 117:2345–52.
  • Hewitt MG, Morrison PWJ, Boostrom HM, et al. (2020). In vitro topical delivery of chlorhexidine to the cornea: enhancement using drug-loaded contact lenses and β-cyclodextrin complexation, and the importance of simulating tear irrigation. Mol Pharm 17:1428–41.
  • Hoyo J, Ivanova K, Guaus E, et al. (2019). Multifunctional ZnO NPs-chitosan-gallic acid hybrid nanocoating to overcome contact lenses associated conditions and discomfort. J Colloid Interface Sci 543:114–21.
  • Hsu KH, Fentzke RC, Chauhan A. (2013). Feasibility of corneal drug delivery of cysteamine using vitamin E modified silicone hydrogel contact lenses. Eur J Pharm Biopharm 85:531–40.
  • Hsu KH, Carbia BE, Plummer C, et al. (2015). Dual drug delivery from vitamin E loaded contact lenses for glaucoma therapy. Eur J Pharm Biopharm 94:312–21.
  • Hu X, Tan H, Hao L. (2016). Functional hydrogel contact lens for drug delivery in the application of oculopathy therapy. J Mech Behav Biomed Mater 64:43–52.
  • Huang JF, Zhong J, Chen GP, et al. (2016). A hydrogel-based hybrid theranostic contact lens for fungal keratitis. ACS Nano 10:6464–73.
  • Hui A, Willcox M, Jones L. (2014). In vitro and in vivo evaluation of novel ciprofloxacin-releasing silicone hydrogel contact lenses. Invest Ophthalmol Vis Sci 55:4896–904.
  • Jain RL, Shastri JP. (2011). Study of ocular drug delivery system using drug-loaded liposomes. Int J Pharm Investig 1:35–41.
  • Jeencham R, Sutheerawattananonda M, Rungchang S, et al. (2020). Novel daily disposable therapeutic contact lenses based on chitosan and regenerated silk fibroin for the ophthalmic delivery of diclofenac sodium. Drug Deliv 27:782–90.
  • Jumelle C, Gholizadeh S, Annabi N, et al. (2020). Advances and limitations of drug delivery systems formulated as eye drops. J Control Release 321:1–22.
  • Jung HJ, Chauhan A. (2012). Temperature sensitive contact lenses for triggered ophthalmic drug delivery. Biomaterials 33:2289–300.
  • Kaczmarek JC, Tieppo A, White CJ, et al. (2014). Adjusting biomaterial composition to achieve controlled multiple-day release of dexamethasone from an extended-wear silicone hydrogel contact lens. J Biomater Sci Polym Ed 25:88–100.
  • Kam KW, Yung W, Li GKH, et al. (2017). Infectious keratitis and orthokeratology lens use: a systematic review. Infection 45:727–35.
  • Kar A, Ahamad N, Dewani M, et al. (2022). Wearable and implantable devices for drug delivery: applications and challenges. Biomaterials 283:121435.
  • Karepov S, Ellenbogen T. (2020). Metasurface-based contact lenses for color vision deficiency. Opt Lett 45:1379–82.
  • Khan SA, Shahid S, Mahmood T, et al. (2021). Contact lenses coated with hybrid multifunctional ternary nanocoatings (phytomolecule-coated ZnO nanoparticles: gallic acid: tobramycin) for the treatment of bacterial and fungal keratitis. Acta Biomater 128:262–76.
  • Khanum BNMK, Guha R, Sur VP, et al. (2017). Pirfenidone inhibits post-traumatic proliferative vitreoretinopathy. Eye (Lond) 31:1317–28.
  • Kim HJ, Zhang K, Moore L, et al. (2014). Diamond nanogel-embedded contact lenses mediate lysozyme-dependent therapeutic release. ACS Nano 8:2998–3005.
  • Koganti R, Yadavalli T, Naqvi RA, et al. (2021). Pathobiology and treatment of viral keratitis. Exp Eye Res 205:108483.
  • Kusrini E, Sabira K, Hashim F, et al. (2021). Design, synthesis and antiamoebic activity of dysprosium-based nanoparticles using contact lenses as carriers against Acanthamoeba sp. Acta Ophthalmol 99:e178–e188.
  • La Porta Weber S, Becco de Souza R, Gomes JÁP, et al. (2016). The use of the Esclera scleral contact lens in the treatment of moderate to severe dry eye disease. Am J Ophthalmol 163:167–73.e1.
  • Lanier OL, Christopher KG, Macoon RM, et al. (2020). Commercialization challenges for drug eluting contact lenses. Expert Opin Drug Deliv 17:1133–49.
  • Lee S, Jo I, Kang S, et al. (2017). Smart contact lenses with graphene coating for electromagnetic interference shielding and dehydration protection. ACS Nano 11:5318–24.
  • Li Z, Liu M, Ke L, et al. (2021a). Flexible polymeric nanosized micelles for ophthalmic drug delivery: research progress in the last three years. Nanoscale Adv 3:5240–54.
  • Li Q, Ma C, Ma Y, et al. (2021b). Sustained bimatoprost release using gold nanoparticles laden contact lenses. J Biomater Sci Polym Ed 32:1618–34.
  • Li R, Guan X, Lin X, et al. (2020). Poly(2-hydroxyethyl methacrylate)/β-cyclodextrin-hyaluronan contact lens with tear protein adsorption resistance and sustained drug delivery for ophthalmic diseases. Acta Biomater 110:105–18.
  • Lim M, Jacobs DS, Rosenthal P, et al. (2009). The Boston Ocular Surface Prosthesis as a novel drug delivery system for bevacizumab. Semin Ophthalmol 24:149–55.
  • Liu G, Li K, Wang H, et al. (2020). Stable fabrication of zwitterionic coating based on copper-phenolic networks on contact lens with improved surface wettability and broad-spectrum antimicrobial activity. ACS Appl Mater Interfaces 12:16125–36.
  • Liu Z, Kompella UB, Chauhan A. (2021). Gold nanoparticle synthesis in contact lenses for drug-less ocular cystinosis treatment. Eur J Pharm Biopharm 165:271–8.
  • Liu Z, Overton M, Chauhan A. (2022). Transport of vitamin E from ethanol/water solution into contact lenses and impact on drug transport. J Ocul Pharmacol Ther 38:396–403.
  • Malakooti N, Alexander C, Alvarez-Lorenzo C. (2015). Imprinted contact lenses for sustained release of polymyxin B and related antimicrobial peptides. J Pharm Sci 104:3386–94.
  • Male SR, Shamanna BR, Bhardwaj R, et al. (2022). Color vision devices for color vision deficiency patients: a systematic review and meta-analysis. Health Sci Rep 5:e842.
  • Marty AS, Jurkiewicz T, Mouchel R, et al. (2022). Benefits of scleral lens in the management of irregular corneas and dry eye syndrome after refractive surgery. Eye Contact Lens 48:318–21.
  • Maulvi FA, Soni TG, Shah DO. (2016a). A review on therapeutic contact lenses for ocular drug delivery. Drug Deliv 23:3017–26.
  • Maulvi FA, Lakdawala DH, Shaikh AA, et al. (2016b). In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery. J Control Release 226:47–56.
  • Maulvi FA, Patil RJ, Desai AR, et al. (2019). Effect of gold nanoparticles on timolol uptake and its release kinetics from contact lenses: in vitro and in vivo evaluation. Acta Biomater 86:350–62.
  • Maulvi FA, Desai DT, Shetty KH, et al. (2021). Advances and challenges in the nanoparticles-laden contact lenses for ocular drug delivery. Int J Pharm 608:121090.
  • Mehta P, Al-Kinani AA, Arshad MS, et al. (2019). Engineering and development of chitosan-based nanocoatings for ocular contact lenses. J Pharm Sci 108:1540–51.
  • Morgan SR, Pilia N, Hewitt M, et al. (2020). Controlled in vitro delivery of voriconazole and diclofenac to the cornea using contact lenses for the treatment of Acanthamoeba keratitis. Int J Pharm 579:119102.
  • Mun J, Kim TY, Myung D, et al. (2022). Smart contact lens containing hyaluronate-rose bengal conjugate for biophotonic myopia vision correction. Biomater Sci 10:4997–5005.
  • Mutlu Z, Shams Es-Haghi S, Cakmak M. (2019). Recent trends in advanced contact lenses. Adv Healthc Mater 8:e1801390.
  • Nahum Y, Israeli R, Mircus G, et al. (2019). Antibacterial and physical properties of a novel sonochemical-assisted Zn-CuO contact lens nanocoating. Graefes Arch Clin Exp Ophthalmol 257:95–100.
  • Nasr FH, Khoee S, Dehghan MM, et al. (2016). Preparation and evaluation of contact lenses embedded with polycaprolactone-based nanoparticles for ocular drug delivery. Biomacromolecules 17:485–95.
  • Niu L, Liu X, Ma Z, et al. (2020). Fungal keratitis: pathogenesis, diagnosis and prevention. Microb Pathog 138:103802.
  • Omranipour HM, Sajadi Tabassi SA, Kowsari R, et al. (2015). Brimonidine imprinted hydrogels and evaluation of their binding and releasing properties as new ocular drug delivery systems. Curr Drug Deliv 12:717–25.
  • Palazzo M, Vizzarri F, Ondruška L, et al. (2020). Corneal UV protective effects of a topical antioxidant formulation: a pilot study on in vivo rabbits. IJMS 21:5426.
  • Paradiso P, Serro AP, Saramago B, et al. (2016). Controlled release of antibiotics from vitamin E-loaded silicone-hydrogel contact lenses. J Pharm Sci 105:1164–72.
  • Patel A, Cholkar K, Agrahari V, et al. (2013). Ocular drug delivery systems: an overview. World J Pharmacol 2:47–64.
  • Perez VL, Wirostko B, Korenfeld M, et al. (2020). Ophthalmic drug delivery using iontophoresis: recent clinical applications. J Ocul Pharmacol Ther 36:75–87.
  • Phan CM, Subbaraman LN, Jones L. (2014a). In vitro drug release of natamycin from β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin-functionalized contact lens materials. J Biomater Sci Polym Ed 25:1907–19.
  • Phan CM, Subbaraman L, Jones L. (2014b). Contact lenses for antifungal ocular drug delivery: a review. Expert Opin Drug Deliv 11:537–46.
  • Pillai SKR, Reghu S, Vikhe Y, et al. (2020). Novel antimicrobial coating on silicone contact lens using glycidyl methacrylate and polyethyleneimine based polymers. Macromol Rapid Commun 41:e2000175.
  • Polat HK, Kurt N, Aytekin E, et al. (2022). Novel drug delivery systems to improve the treatment of keratitis. J Ocul Pharmacol Ther 38:376–95.
  • Polania-Baron EJ, Santana-Cruz O, Lichtinger A, et al. (2021). Treatment of severe infectious keratitis with scleral contact lenses as a reservoir of moxifloxacin 0.5. Cornea 40:831–6.
  • Prakash M, Dhesingh RS. (2017). Nanoparticle modified drug loaded biodegradable polymeric contact lenses for sustainable ocular drug delivery. Curr Drug Deliv 14:555–65.
  • Qin G, Zhu Z, Li S, et al. (2017). Development of ciprofloxacin-loaded contact lenses using fluorous chemistry. Biomaterials 124:55–64.
  • Rad MS, Sajadi Tabassi SA, Moghadam MH, et al. (2016). Controlled release of betamethasone from vitamin E-loaded silicone-based soft contact lenses. Pharm Dev Technol 21:894–9.
  • Rad MS, Mohajeri SA. (2017). Extended ciprofloxacin release using Vitamin E diffusion barrier from commercial silicone-based soft contact lenses. Eye Contact Lens 43:103–9.
  • Rodrigues FSC, Campos A, Martins J, et al. (2020). Emerging trends in nanomedicine for improving ocular drug delivery: light-responsive nanoparticles, mesoporous silica nanoparticles, and contact lenses. ACS Biomater Sci Eng 6:6587–97.
  • Roostaei N, Hamidi SM. (2022). Two-dimensional biocompatible plasmonic contact lenses for color blindness correction. Sci Rep 12:2037.
  • Ross AE, Bengani LC, Tulsan R, et al. (2019). Topical sustained drug delivery to the retina with a drug-eluting contact lens. Biomaterials 217:119285.
  • Saad S, Saad R, Jouve L, et al. (2020). Corneal crosslinking in keratoconus management. J Fr Ophtalmol 43:1078–95.
  • Salih AE, Elsherif M, Alam F, et al. (2021). Gold nanocomposite contact lenses for color blindness management. ACS Nano 15:4870–80.
  • Sandri G, Bonferoni MC, Rossi S, et al. (2016). Platelet lysate and chondroitin sulfate loaded contact lenses to heal corneal lesions. Int J Pharm 509:188–96.
  • Santodomingo-Rubido J, Carracedo G, Suzaki A, et al. (2022). Keratoconus: an updated review. Cont Lens Anterior Eye 45:101559.
  • Seewoodhary M. (2021). An overview of diabetic retinopathy and other ocular complications of diabetes mellitus. Nurs Stand 36:71–6.
  • Sekar P, Chauhan A. (2019). Effect of vitamin-E integration on delivery of prostaglandin analogs from therapeutic lenses. J Colloid Interface Sci 539:457–67.
  • Sekar P, Dixon PJ, Chauhan A. (2019). Pigmented contact lenses for managing ocular disorders. Int J Pharm 555:184–97.
  • Sercombe L, Veerati T, Moheimani F, et al. (2015). Advances and challenges of liposome assisted drug delivery. Front Pharmacol 6:286.
  • Sève P, Cacoub P, Bodaghi B, et al. (2017). Uveitis: diagnostic work-up. A literature review and recommendations from an expert committee. Autoimmun Rev 16:1254–64.
  • Shetty R, D’Souza S, Khamar P, et al. (2020). Biochemical markers and alterations in keratoconus. Asia Pac J Ophthalmol (Phila) 9:533–40.
  • Shi Y, Lv H, Fu Y, et al. (2013). Preparation and characterization of a hydrogel carrier to deliver gatifloxacin and its application as a therapeutic contact lens for bacterial keratitis therapy. Biomed Mater 8:055007.
  • Silva D, de Sousa HC, Gil MH, et al. (2020). Diclofenac sustained release from sterilised soft contact lens materials using an optimised layer-by-layer coating. Int J Pharm 585:119506.
  • Singh M, Bharadwaj S, Lee KE, et al. (2020). Therapeutic nanoemulsions in ophthalmic drug administration: concept in formulations and characterization techniques for ocular drug delivery. J Control Release 328:895–916.
  • Soluri A, Hui A, Jones L. (2012). Delivery of ketotifen fumarate by commercial contact lens materials. Optom Vis Sci 89:1140–9.
  • Stevens GA, White RA, Flaxman SR, et al. (2013). Global prevalence of vision impairment and blindness: magnitude and temporal trends, 1990–2010. Ophthalmology 120:2377–84.
  • Stone JL, Robin AL, Novack GD, et al. (2009). An objective evaluation of eyedrop instillation in patients with glaucoma. Arch Ophthalmol 127:732–6.
  • Sy A, Srinivasan M, Mascarenhas J, et al. (2012). Pseudomonas aeruginosa keratitis: outcomes and response to corticosteroid treatment. Invest Ophthalmol Vis Sci 53:267–72.
  • Tanito M. (2021). Reported evidence of vitamin E protection against cataract and glaucoma. Free Radic Biol Med 177:100–19.
  • Toda R, Kawazu K, Oyabu M, et al. (2011). Comparison of drug permeabilities across the blood-retinal barrier, blood-aqueous humor barrier, and blood-brain barrier. J Pharm Sci 100:3904–11.
  • Torres-Luna C, Hu N, Tammareddy T, et al. (2019a). Extended delivery of non-steroidal anti-inflammatory drugs through contact lenses loaded with vitamin E and cationic surfactants. Cont Lens Anterior Eye 42:546–52.
  • Torres-Luna C, Hu N, Koolivand A, et al. (2019b). Effect of a cationic surfactant on microemulsion globules and drug release from hydrogel contact lenses. Pharmaceutics 11:262.
  • Tieppo A, White CJ, Paine AC, et al. (2012). Sustained in vivo release from imprinted therapeutic contact lenses. J Control Release 157:391–7.
  • Tuft S, Somerville TF, Li JO, et al. (2022). Bacterial keratitis: identifying the areas of clinical uncertainty. Prog Retin Eye Res 89:101031.
  • Ung L, Chodosh J. (2021). Foundational concepts in the biology of bacterial keratitis. Exp Eye Res 209:108647.
  • Varela-Garcia A, Gomez-Amoza JL, Concheiro A, et al. (2020). Imprinted contact lenses for ocular administration of antiviral drugs. Polymers 12:2026.
  • Vazirani J, Wurity S, Ali MH. (2015). Multidrug-resistant pseudomonas aeruginosa keratitis: risk factors, clinical characteristics, and outcomes. Ophthalmology 122:2110–4.
  • Wang B, Liu H, Zhang B, et al. (2016). Development of antibacterial and high light transmittance bulk materials: incorporation and sustained release of hydrophobic or hydrophilic antibiotics. Colloids Surf B Biointerfaces 141:483–90.
  • Wei N, Xu X, Huang C, et al. (2022). Retraction note: hyaluronic acid-pluronic®F127-laden soft contact lenses for corneal epithelial healing: in vitro and in vivo studies. AAPS Pharm Sci Tech 23:242.
  • White CJ, Byrne ME. (2010). Molecularly imprinted therapeutic contact lenses. Expert Opin Drug Deliv 7:765–80.
  • White CJ, McBride MK, Pate KM, et al. (2011). Extended release of high molecular weight hydroxypropyl methylcellulose from molecularly imprinted, extended wear silicone hydrogel contact lenses. Biomaterials 32:5698–705.
  • Wong A, Fallon M, Celiksoy V, et al. (2022). A Composite system based upon hydroxypropyl cyclodextrins and soft hydrogel contact lenses for the delivery of therapeutic doses of econazole to the cornea, in vitro. Pharmaceutics 14:1631.
  • Wu C, Or PW, Chong JIT, et al. (2021a). Extended delivery of pirfenidone with novel, soft contact lenses in vitro and in vivo. J Ocul Pharmacol Ther 37:75–83.
  • Wu C, Or PW, Chong JIT, et al. (2021b). Controllable release of pirfenidone by polyvinyl alcohol film embedded soft contact lenses in vitro and in vivo. Drug Deliv 28:634–41.
  • Wu Q, Yang C, Chen W, et al. (2022). Wireless-powered electrical bandage contact lens for facilitating corneal wound healing. Adv Sci (Weinh) 9:e2202506.
  • Xiao A, Dhand C, Leung CM, et al. (2018). Strategies to design antimicrobial contact lenses and contact lens cases. J Mater Chem B 6:2171–86.
  • Xu X, Awwad S, Diaz-Gomez L, et al. (2021). 3D printed punctal plugs for controlled ocular drug delivery. Pharmaceutics 13:1421.
  • Yañez F, Martikainen L, Braga ME, et al. (2011). Supercritical fluid-assisted preparation of imprinted contact lenses for drug delivery. Acta Biomater 7:1019–30.
  • Yang M, Yang Y, Lei M, et al. (2016). Experimental studies on soft contact lenses for controlled ocular delivery of pirfinedone: in vitro and in vivo. Drug Deliv 23:3538–43.
  • Yan F, Liu Y, Han S, et al. (2020). Bimatoprost imprinted silicone contact lens to treat glaucoma. AAPS Pharm Sci Tech 21:63.
  • Yeh SB, Chen CS, Chen WY, et al. (2014). Modification of silicone elastomer with zwitterionic silane for durable antifouling properties. Langmuir 30:11386–93.
  • Yellepeddi VK, Sheshala R, McMillan H, et al. (2015). Punctal plug: a medical device to treat dry eye syndrome and for sustained drug delivery to the eye. Drug Discov Today 20:884–9.
  • Yin C, Qi X, Wu J, et al. (2021). Therapeutic contact lenses fabricated by hyaluronic acid and silver incorporated bovine serum albumin porous films for the treatment of alkali-burned corneal wound. Int J Biol Macromol 184:713–20.
  • Zha XJ, Zhang ST, Pu JH, et al. (2020). Nanofibrillar poly(vinyl alcohol) ionic organohydrogels for smart contact lens and human-interactive sensing. ACS Appl Mater Interfaces 12:23514–22.
  • Zhang X, Cao X, Qi P. (2020). Therapeutic contact lenses for ophthalmic drug delivery: major challenges. J Biomater Sci Polym Ed 31:549–60.
  • Zhao L, Wang H, Feng C, et al. (2021a). Preparation and evaluation of starch hydrogel/contact Lens composites as epigallocatechin gallate delivery systems for inhibition of bacterial adhesion. Front Bioeng Biotechnol 9:759303.
  • Zhao L, Qi X, Cai T, et al. (2021b). Gelatin hydrogel/contact lens composites as rutin delivery systems for promoting corneal wound healing. Drug Deliv 28:1951–61.
  • Zhong H, Sun G, Lin X, et al. (2011). Evaluation of pirfenidone as a new postoperative antiscarring agent in experimental glaucoma surgery. Invest Ophthalmol Vis Sci 52:3136–42.
  • Zhu Q, Cheng H, Huo Y, et al. (2018). Sustained ophthalmic delivery of highly soluble drug using pH-triggered inner layer-embedded contact lens. Int J Pharm 544:100–11.