1,194
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Transarterial radioembolization: a systematic review on gaining control over the parameters that influence microsphere distribution

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2226366 | Received 05 Sep 2022, Accepted 12 Jun 2023, Published online: 21 Jun 2023

References

  • Amili O, Golzarian J, Coletti F. (2019). In vitro study of particle transport in successively bifurcating vessels. Ann Biomed Eng 47:1–13. doi: 10.1007/s10439-019-02293-2.
  • Anton R, Antonana J, Aramburu J, et al. (2021). A proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization. Sci Rep 11:3895. doi: 10.1038/s41598-021-83414-7.
  • Aramburu J, Antón R, Bernal N, et al. (2015). Physiological outflow boundary conditions methodology for small arteries with multiple outlets: a patient-specific hepatic artery haemodynamics case study. Proc Inst Mech Eng H 229:291–306. doi: 10.1177/0954411915578549.
  • Aramburu J, Anton R, Rivas A, et al. (2016). Computational assessment of the effects of the catheter type on particle-hemodynamics during liver radioembolization. J Biomech 49:3705–13. doi: 10.1016/j.jbiomech.2016.09.035.
  • Aramburu J, Anton R, Rivas A, et al. (2017). Computational particle-haemodynamics analysis of liver radioembolization pretreatment as an actual treatment surrogate. Int J Numer Meth Biomed Engng 33:e02791. doi: 10.1002/cnm.2791.
  • Aramburu J, Antón R, Rivas A, et al. (2016). Liver cancer arterial perfusion modelling and CFD boundary conditions methodology: a case study of the haemodynamics of a patient-specific hepatic artery in literature-based healthy and tumour-bearing liver scenarios. Int J Numer Meth Biomed Engng 32:e02764. doi: 10.1002/cnm.2764.
  • Aramburu J, Antón R, Rivas A, et al. (2016). Numerical investigation of liver radioembolization via computational particle–hemodynamics: The role of the microcatheter distal direction and microsphere injection point and velocity. J Biomech 49:3714–21. doi: 10.1016/j.jbiomech.2016.09.034.
  • Aramburu J, Antón R, Rodríguez-Fraile M, et al. (2022). Computational fluid dynamics modeling of liver radioembolization: a review. Cardiovasc Intervent Radiol 45:12–20. doi: 10.1007/s00270-021-02956-5.
  • Aramburu J, Anton R, Rivas A, et al. (2017). The role of angled-tip microcatheter and microsphere injection velocity in liver radioembolization: a computational particle-hemodynamics study. Int J Numer Meth Biomed Engng 33:e2895. doi: 10.1002/cnm.2895.
  • Ashraf S, Loizidou M, Crowe R, et al. (1997). Blood vessels in liver metastases from both sarcoma and carcinoma lack perivascular innervation and smooth muscle cells. Clin Exp Metastasis 15:484–98. doi: 10.1023/A:1018466608614.
  • Basciano C, Kleinstreuer C, Kennedy A. (2011). Computational fluid dynamics modeling of 90Y microspheres in human hepatic tumors. J Nucl Med Radiat Ther 2:112. doi: 10.4172/2155-9619.1000112.
  • Basciano CA, Kleinstreuer C, Kennedy AS, et al. (2010). Computer modeling of controlled microsphere release and targeting in a representative hepatic artery system. Ann Biomed Eng 38:1862–79. doi: 10.1007/s10439-010-9955-z.
  • Bomberna T, Koudehi GA, Claerebout C, et al. (2021). Transarterial drug delivery for liver cancer: numerical simulations and experimental validation of particle distribution in patient-specific livers. Expert Opin Drug Deliv 18:409–22. doi: 10.1080/17425247.2021.1853702.
  • Bomberna T, Vermijs S, Lejoly M, et al. (2022). A hybrid particle-flow CFD modeling approach in truncated hepatic arterial trees for liver radioembolization: a patient-specific case study. Front Bioeng Biotechnol 10:914979. doi: 10.3389/fbioe.2022.914979.
  • Breedis C, Young G. (1954). The blood supply of neoplasms in the liver. Am J Pathol 30:969–77.
  • Burton MA, Gray BN. (1987). Redistribution of blood flow in experimental hepatic tumours with noradrenaline and propranolol. Br J Cancer 56:585–8. doi: 10.1038/bjc.1987.245.
  • Burton MA, Gray BN, Coletti A. (1988). Effect of angiotensin II on blood flow in the transplanted sheep squamous cell carcinoma. Eur J Cancer Clin Oncol 24:1373–6. doi: 10.1016/0277-5379(88)90231-3.
  • Burton MA, Gray BN, Klemp PF, et al. (1989). Selective internal radiation therapy: distribution of radiation in the liver. Eur J Cancer Clin Oncol 25:1487–91. doi: 10.1016/0277-5379(89)90109-0.
  • Burton MA, Gray BN, Self GW, et al. (1985). Manipulation of experimental rat and rabbit liver tumor blood flow with angiotensin II. Cancer Res 45:5390–3.
  • Caine M, McCafferty MS, McGhee S, et al. (2017). Impact of yttrium-90 microsphere density, flow dynamics, and administration technique on spatial distribution: analysis using an in vitro model. J Vasc Interv Radiol 28:260–8.e2. doi: 10.1016/j.jvir.2016.07.001.
  • Carlisle KM, Halliwell M, Read AE, Wells PN. (1992). Estimation of total hepatic blood flow by duplex ultrasound. Gut 33:92–7. doi: 10.1136/gut.33.1.92.
  • Childress EM, Kleinstreuer C. (2014). Computationally efficient particle release map determination for direct tumor-targeting in a representative hepatic artery system. J Biomech Eng 136:011012.
  • Childress EM, Kleinstreuer C. (2014). Impact of fluid-structure interaction on direct tumor-targeting in a representative hepatic artery system. Ann Biomed Eng 42:461–74. doi: 10.1007/s10439-013-0910-7.
  • Childress EM, Kleinstreuer C, Kennedy AS. (2012). A new catheter for tumor-targeting with radioactive microspheres in representative hepatic artery systems–part II: solid tumor-targeting in a patient-inspired hepatic artery system. J Biomech Eng 134:051005. doi: 10.1115/1.4006685.
  • D’Abadie P, Goffette P, Amini N, et al. (2021). Antireflux catheter improves tumor targeting in liver radioembolization with resin microspheres. Diagn Interv Radiol 27:768–73. doi: 10.5152/dir.2021.20785.
  • Garin E, Tselikas L, Guiu B, et al. (2021). Personalised versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): a randomised, multicentre, open-label phase 2 trial. Lancet Gastroenterol Hepatol 6:17–29. doi: 10.1016/S2468-1253(20)30290-9.
  • Gentile F, Curcio A, Indolfi C, et al. (2008). The margination propensity of spherical particles for vascular targeting in the microcirculation. J Nanobiotechnology 6:9. doi: 10.1186/1477-3155-6-9.
  • Gill RW. (1985). Measurement of blood flow by ultrasound: accuracy and sources of error. Ultrasound Med Biol 11:625–41. doi: 10.1016/0301-5629(85)90035-3.
  • Hilgard P, Hamami M, Fouly AE, et al. (2010). Radioembolization with yttrium-90 glass microspheres in hepatocellular carcinoma: European experience on safety and long-term survival. Hepatology 52:1741–9. doi: 10.1002/hep.23944.
  • Hogberg J, Rizell M, Hultborn R, et al. (2016). Simulation model of microsphere distribution for selective internal radiation therapy agrees with observations. Int J Radiat Oncol Biol Phys 96:414–21. doi: 10.1016/j.ijrobp.2016.05.007.
  • Jernigan SR, Osborne JA, Mirek CJ, Buckner G. (2015). Selective internal radiation therapy: quantifying distal penetration and distribution of resin and glass microspheres in a surrogate arterial model. J Vasc Interv Radiol 26:897–904.e2. doi: 10.1016/j.jvir.2015.02.022.
  • Kennedy AS, Kleinstreuer C, Basciano CA, Dezarn WA. (2010). Computer modeling of yttrium-90-microsphere transport in the hepatic arterial tree to improve clinical outcomes. Int J Radiat Oncol Biol Phys 76:631–7. doi: 10.1016/j.ijrobp.2009.06.069.
  • Kleinstreuer C, Basciano CA, Childress EM, Kennedy AS. (2012). A new catheter for tumor targeting with radioactive microspheres in representative hepatic artery systems. Part I: impact of catheter presence on local blood flow and microsphere delivery. J Biomech Eng 134:051004. doi: 10.1115/1.4006684.
  • Leen E, Goldberg JA, Robertson J, et al. (1991). Detection of hepatic metastases using duplex/color Doppler sonography. Ann Surg 214:599–604. doi: 10.1097/00000658-199111000-00010.
  • Lertxundi U, Aramburu J, Ortega J, et al. (2021). CFD simulations of radioembolization: a proof-of-concept study on the impact of the hepatic artery tree truncation. Mathematics 9:839. doi: 10.3390/math9080839.
  • Mattsson J, Appelgren L, Hamberger B, Peterson HI. (1977). Adrenergic innervation of tumour blood vessels. Cancer Letters 3:347–51. doi: 10.1016/S0304-3835(77)97078-1.
  • Maxwell AWP, Mendoza HG, Sellitti MJ, et al. (2022). Optimizing (90)Y Particle density improves outcomes after radioembolization. Cardiovasc Intervent Radiol 45:958–69. doi: 10.1007/s00270-022-03139-6.
  • Meek J, Fletcher S, Gauss CH, et al. (2019). Temporary balloon occlusion for hepatic arterial flow redistribution during yttrium-90 radioembolization. J Vasc Interv Radiol 30:1201–6. doi: 10.1016/j.jvir.2019.01.003.
  • Miller SR, Jernigan SR, Abraham RJ, Buckner GD. (2022). Comparison of bolus and dual syringe administration on glass yttrium-90 microsphere deposition in an in vitro microvascular hepatic tumor model. J Vasc Interv Radiol 34:11–20. doi: 10.1016/j.jvir.2022.07.032.
  • Ortega J, Anton R, Ramos JC, et al. (2020). On the importance of spiral-flow inflow boundary conditions when using idealized artery geometries in the analysis of liver radioembolization: A parametric study. Int J Numer Meth Biomed Engng 36:e3337. doi: 10.1002/cnm.3337.
  • Ortega J, Antón R, Ramos JC, et al. (2022). Computational study of a novel catheter for liver radioembolization. Int J Numer Method Biomed Eng 38:e3577. doi: 10.1002/cnm.3577.
  • Pasciak AS, McElmurray JH, Bourgeois AC, et al. (2015). The impact of an antireflux catheter on target volume particulate distribution in liver-directed embolotherapy: a pilot study. J Vasc Interv Radiol 26:660–9. doi: 10.1016/j.jvir.2015.01.029.
  • Reinders MTM, Smits MLJ, Van Roekel C, Braat AJAT. (2019). Holmium-166 microsphere radioembolization of hepatic malignancies. Semin Nucl Med 49:237–43. doi: 10.1053/j.semnuclmed.2019.01.008.
  • Richards AL, Kleinstreuer C, Kennedy AS, et al. (2012). Experimental microsphere targeting in a representative hepatic artery system. IEEE Trans Biomed Eng 59:198–204. doi: 10.1109/TBME.2011.2170195.
  • Roncali E, Taebi A, Foster C, Vu CT. (2020). Personalized dosimetry for liver cancer y-90 radioembolization using computational fluid dynamics and monte carlo simulation. Ann Biomed Eng 48:1499–510. doi: 10.1007/s10439-020-02469-1.
  • Rose SC, Halstead GD, Narsinh KH. (2017). Pressure-directed embolization of hepatic arteries in a porcine model using a temporary occlusion balloon microcatheter: proof of concept. Cardiovasc Intervent Radiol 40:1769–76. doi: 10.1007/s00270-017-1753-7.
  • Rose SC, Kikolski SG, Chomas JE. (2013). Downstream hepatic arterial blood pressure changes caused by deployment of the surefire antireflux expandable tip. Cardiovasc Intervent Radiol 36:1262–9. doi: 10.1007/s00270-012-0538-2.
  • Salem R, Mazzaferro V, Sangro B. (2013). Yttrium 90 radioembolization for the treatment of hepatocellular carcinoma: Biological lessons, current challenges, and clinical perspectives. Hepatology 58:2188–97. doi: 10.1002/hep.26382.
  • Schenk WG, Jr., Mc DJ, Mc DK, Drapanas T. (1962). Direct measurement of hepatic blood flow in surgical patients: with related observations on hepatic flow dynamics in experimental animals. Ann Surg 156:463–71. doi: 10.1097/00000658-196209000-00013.
  • Siebenhüner AR, Güller U, Warschkow R. (2020). Population-based SEER analysis of survival in colorectal cancer patients with or without resection of lung and liver metastases. BMC Cancer 20:246. doi: 10.1186/s12885-020-6710-1.
  • Simoncini C, Rolland Y, Morgenthaler V, et al. (2017). Blood flow simulation in patient-specific segmented hepatic arterial tree. Irbm 38:120–6. doi: 10.1016/j.irbm.2017.04.001.
  • Smits MLJ, Dassen MG, Prince JF, et al. (2020). The superior predictive value of 166Ho-scout compared with 99mTc-macroaggregated albumin prior to 166Ho-microspheres radioembolization in patients with liver metastases. Eur J Nucl Med Mol Imaging 47:798–806. doi: 10.1007/s00259-019-04460-y.
  • Smits ML, Elschot M, van den Bosch MA, et al. (2013). In vivo dosimetry based on SPECT and MR imaging of 166Ho-microspheres for treatment of liver malignancies. J Nucl Med 54:2093–100. doi: 10.2967/jnumed.113.119768.
  • Su GL, Altayar O, O’Shea R, et al. (2022). AGA clinical practice guideline on systemic therapy for hepatocellular carcinoma. Gastroenterology 162:920–34. doi: 10.1053/j.gastro.2021.12.276.
  • Sung H, Ferlay J, Siegel RL, et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–49. doi: 10.3322/caac.21660.
  • Taebi A, Berk S, Roncali E. (2021). Realistic boundary conditions in SimVascular through inlet catheter modeling. BMC Res Notes 14:215. doi: 10.1186/s13104-021-05631-7.
  • Taebi A, Janibek N, Goldman R, et al. (2022). The impact of injection distance to bifurcations on yttrium-90 distribution in liver cancer radioembolization. J Vasc Interv Radiol 33:668–77.e1. doi: 10.1016/j.jvir.2022.03.006.
  • Taebi A, Pillai RM, Roudsari BS, et al. (2020). Computational modeling of the liver arterial blood flow for microsphere therapy: effect of boundary conditions. Bioengineering (Basel) 7:64. doi: 10.3390/bioengineering7030064.
  • Taebi A, Vu CT, Roncali E. (2021). Multiscale computational fluid dynamics modeling for personalized liver cancer radioembolization dosimetry. J Biomech Eng 143:01. doi: 10.1115/1.4047656.
  • Van de Wiele C, Maes A, Brugman E, et al. (2012). SIRT of liver metastases: physiological and pathophysiological considerations. Eur J Nucl Med Mol Imaging 39:1646–55. doi: 10.1007/s00259-012-2189-6.
  • van den Hoven AF, Lam MG, Jernigan S, et al. (2015). Innovation in catheter design for intra-arterial liver cancer treatments results in favorable particle-fluid dynamics. J Exp Clin Cancer Res 34:74. doi: 10.1186/s13046-015-0188-8.
  • van den Hoven AF, Prince JF, Bruijnen RC, et al. (2016). Surefire infusion system versus standard microcatheter use during holmium-166 radioembolization: study protocol for a randomized controlled trial. Trials 17:520. doi: 10.1186/s13063-016-1643-3.
  • van den Hoven AF, Smits MLJ, Rosenbaum CENM, et al. (2014). The effect of intra-arterial angiotensin ii on the hepatic tumor to non-tumor blood flow ratio for radioembolization: a systematic review. PLoS ONE 9:e86394. doi: 10.1371/journal.pone.0086394.
  • van Roekel C, van den Hoven AF, Bastiaannet R, et al. (2021). Use of an anti-reflux catheter to improve tumor targeting for holmium-166 radioembolization-a prospective, within-patient randomized study. Eur J Nucl Med Mol Imaging 48:1658–68. doi: 10.1007/s00259-020-05079-0.
  • Zoli M, Magalotti D, Bianchi G, et al. (1999). Total and functional hepatic blood flow decrease in parallel with ageing. Age Ageing 28:29–33. doi: 10.1093/ageing/28.1.29.