985
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A click chemistry-based, free radical-initiated delivery system for the capture and release of payloads

, &
Article: 2232952 | Received 02 Feb 2023, Accepted 13 Jun 2023, Published online: 11 Jul 2023

References

  • Danielson AP, Van-Kuren DB, Bornstein JP, et al. (2018). Investigating the mechanism of Horseradish peroxidase as a RAFT-initiase. Polymers 10:1. doi: 10.3390/polym10070.
  • Gupta MK, Meyer TA, Nelson CE, Duvall CL. (2012). Poly(PS-b-DMA) micelles for reactive oxygen species triggered drug release. J Control Release 162:591–9. doi: 10.1016/j.jconrel.2012.07.042.
  • Hapuarachchige S, Kato Y, Artemov D. (2016). Bioorthogonal two-component drug delivery in HER2(+) breast cancer mouse models. Sci Rep 6:24298. doi: 10.1038/srep24298.
  • Hapuarachchige S. (2017). Click therapy: novel concept in pretargeting drug delivery. J Pharm Sci Technol Japan 77:306–9. doi: 10.14843/jpstj.77.306.
  • Kim E, Koo H. (2019). Biomedical applications of copper-free click chemistry: in vitro, in vivo, and ex vivo. Chem Sci 10:7835–51. doi: 10.1039/C9SC03368H.
  • Löffek S, Schilling O, Franzke C-W. (2011). Biological role of matrix metalloproteinases: a critical balance. Eur Respir J 38:191–208. doi: 10.1183/09031936.00146510.
  • Lowe CJ, DiMartini ET, Mirmajlesi KR, et al. (2019). Free radical-mediated targeting and immobilization of coupled payloads. J Drug Target 27:1025–34. doi: 10.1080/1061186x.2019.1584807.
  • Majumder J, Minko T. (2021). Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opin Drug Deliv 18:205–27. doi: 10.1080/17425247.2021.1828339.
  • Parker CL, McSweeney MD, Lucas AT, et al. (2019). Pretargeted delivery of PEG-coated drug carriers to breast tumors using multivalent, bispecific antibody against polyethylene glycol and HER2. Nanomedicine 21:102076. doi: 10.1016/j.nano.2019.102076.
  • Pham-Huy LA, He H, Pham-Huy C. (2008). Free radicals, antioxidants in disease and health. Int J Biomed Sci 4:89–96.
  • Rosenblum D, Joshi N, Tao W, et al. (2018). Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 9:1410. doi: 10.1038/s41467-018-03705-y.
  • Serra R. (2020). Matrix metalloproteinases in health and disease. Biomolecules 10:1138. doi: 10.3390/biom1008.
  • Takayama Y, Kusamori K, Nishikawa M. (2019). Click chemistry as a tool for cell engineering and drug delivery. Molecules 24:172. doi: 10.3390/molecules24010.
  • Tewabe A, Abate A, Tamrie M, et al. (2021). Targeted drug delivery—from magic bullet to nanomedicine: principles, challenges, and future perspectives. J Multidiscip Helathc 14:1711–24. doi: 10.2147/JMDH.S313968.
  • Thomas RG, Surendran SP, Jeong YY. (2020). Tumor microenvironment-stimuli responsive nanoparticles for anticancer therapy. Front Mol Biosci 7:610533. doi: 10.3389/fmolb.2020.610533.
  • Wang S, Huang P, Chen X. (2016). Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization. Adv Mater 28:7340–64. doi: 10.1002/adma.201601498.
  • Weinstain R, Savariar EN, Felsen CN, Tsien RY. (2014). In vivo targeting of hydrogen peroxide by activatable cell-penetrating peptides. J Am Chem Soc 136:874–7. doi: 10.1021/ja411547j.
  • Zhang W, Hu X, Shen Q, Xing D. (2019). Mitochondria-specific drug release and reactive oxygen species burst induced by polyprodrug nanoreactors can enhance chemotherapy. Nat Commun 10:1–14. doi: 10.1038/s41467-019-09566-3.
  • Zhao Z, Ukidve A, Kim J, Mitragotri S. (2020). Targeting strategies for tissue-specific drug delivery. Cell 181:151–67. doi: 10.1016/j.cell.2020.02.001.