1,807
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Oral delivery of nerolidol alleviates cyclophosphamide-induced renal inflammation, apoptosis, and fibrosis via modulation of NF-κB/cleaved caspase-3/TGF-β signaling molecules

, , , , , & show all
Article: 2241661 | Received 09 Jan 2023, Accepted 09 Jul 2023, Published online: 09 Aug 2023

References

  • Abraham P, Isaac B. (2011). The effects of oral glutamine on cyclophosphamide-induced nephrotoxicity in rats. Hum Exp Toxicol 30:1–20. Available at: https://pubmed.ncbi.nlm.nih.gov/20621952/. doi: 10.1177/0960327110376552.
  • Abraham P, Isaac B. (2011). Ultrastructural changes in the rat kidney after single dose of cyclophosphamide-Possible roles for peroxisome proliferation and lysosomal dysfunction in cyclophosphamide-induced renal damage. Hum Exp Toxicol 30:1924–30. doi: 10.1177/0960327111402240.
  • Akhter S, Irfan HM, Jahan S, et al. (2022). Nerolidol: a potential approach in rheumatoid arthritis through reduction of TNF-α, IL-1β, IL-6, NF-kB, COX-2 and antioxidant effect in CFA-induced arthritic model. Inflammopharmacology 30:537–48. doi: 10.1007/s10787-022-00930-2.
  • Al Drees A, Salah Khalil M, Soliman M. (2017). Histological and immunohistochemical basis of the effect of aminoguanidine on renal changes associated with hemorrhagic shock in a rat model. Acta Histochem Cytochem 50:11–9. Available at: /pmc/articles/PMC5374099/. doi: 10.1267/ahc.16025.
  • Albino AH, Zambom FFF, Foresto-Neto O, et al. (2021). Renal inflammation and innate immune activation underlie the transition from gentamicin-induced acute kidney injury to renal fibrosis. Front Physiol 12:606392. doi: 10.3389/fphys.2021.606392.
  • Al-Gayyar MMH, Hassan HM, Alyoussef A, et al. (2016). Nigella sativa oil attenuates chronic nephrotoxicity induced by oral sodium nitrite: effects on tissue fibrosis and apoptosis. Redox Rep 21:50–60. doi: 10.1179/1351000215Y.0000000035.
  • Al-Naimi M, Rasheed H, Hussien N, et al. (2019). Nephrotoxicity: role and significance of renal biomarkers in the early detection of acute renal injury. J Adv Pharm Technol Res 10:95–9. doi: 10.4103/japtr.JAPTR_336_18.
  • Alshahrani S, Ali Thubab HM, Ali Zaeri AM, et al. (2022). The protective effects of sesamin against cyclophosphamide-induced nephrotoxicity through modulation of oxidative stress, inflammatory-cytokines and apoptosis in rats. Int J Mol Sci 2311615. Available at: https://www.mdpi.com/1422-0067/23/19/11615/htm. doi: 10.3390/ijms231911615.
  • Althunibat OY, Abukhalil MH, Aladaileh SH, et al. (2022). Formononetin ameliorates renal dysfunction, oxidative stress, inflammation, and apoptosis and upregulates Nrf2/HO-1 signaling in a rat model of gentamicin-induced nephrotoxicity. Front Pharmacol 13:916732. doi: 10.3389/fphar.2022.916732.
  • Anrather J, Racchumi G, Iadecola C. (2006). NF-kappaB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J Biol Chem 281:5657–67. Available at: https://pubmed.ncbi.nlm.nih.gov/16407283/. doi: 10.1074/jbc.M506172200.
  • Ansari MA, Iqubal A, Ekbbal R, et al. (2019). Effects of nimodipine, vinpocetine and their combination on isoproterenol-induced myocardial infarction in rats. Biomed Pharmacother 109:1372–80. Available at: https://pubmed.ncbi.nlm.nih.gov/30551388/. doi: 10.1016/j.biopha.2018.10.199.
  • Arakawa T, Nakamura M, Yoshimoto T, et al. (1995). The transcriptional regulation of human arachidonate 12-lipoxygenase gene by NF kappa B/Rel. FEBS Lett 363:105–10. Available at: https://pubmed.ncbi.nlm.nih.gov/7729529/. doi: 10.1016/0014-5793(95)00293-i.
  • Arunachalam S, Nagoor Meeran MF, Azimullah S, et al. (2021). Nerolidol attenuates oxidative stress, inflammation, and apoptosis by modulating Nrf2/MAPK signaling pathways in doxorubicin-induced acute cardiotoxicity in rats. Antioxidants 10:984. Available at: https://www.mdpi.com/2076-3921/10/6/984/htm. doi: 10.3390/antiox10060984.
  • Attia AA, Sorour JM, Mohamed NA, et al. (2023). Biochemical, histological, and ultrastructural studies of the protective role of vitamin E on cyclophosphamide-induced cardiotoxicity in male rats. Biomedicines 11:390. Available at: https://www.mdpi.com/2227-9059/11/2/390/htm. doi: 10.3390/biomedicines11020390.
  • Ayhanci A, Günes S, Sahinturk V, et al. (2010). Seleno l-methionine acts on cyclophosphamide-induced kidney toxicity. Biol Trace Elem Res 136:171–9. doi: 10.1007/s12011-009-8535-2.
  • Ayza MA, Zewdie KA, Yigzaw EF, et al. (2022). Potential protective effects of antioxidants against cyclophosphamide-induced nephrotoxicity. Int J Nephrol 2022:5096825. doi: 10.1155/2022/5096825.
  • Balakrishnan V, Ganapathy S, Veerasamy V, et al. (2022). Nerolidol assists Cisplatin to induce early apoptosis in human laryngeal carcinoma Hep 2 cells through ROS and mitochondrial-mediated pathway: an in vitro and in silico view. J Food Biochem 46:e14465. doi: 10.1111/jfbc.14465.
  • Barnett S, Errington J, Sludden J, et al. (2021). Pharmacokinetics and pharmacogenetics of cyclophosphamide in a neonate and infant childhood cancer patient population. Pharmaceuticals 14:272. Available at: https://pubmed.ncbi.nlm.nih.gov/33809608/. doi: 10.3390/ph14030272.
  • Bokhary T, Refaat B, Bakr ES, et al. (2022). Salvadora persica extract attenuates cyclophosphamide-induced hepatorenal damage by modulating oxidative stress, inflammation and apoptosis in rats. J Integr Med 20:348–54. doi: 10.1016/j.joim.2022.05.001.
  • Bonventre JV. (2009). Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol Dialysis Transplant 24:3265–8. Available at: https://academic.oup.com/ndt/article/24/11/3265/1942806. doi: 10.1093/ndt/gfp010.
  • Ceole LF, Cardoso MDG, Soares MJ. (2017). Nerolidol, the main constituent of Piper aduncum essential oil, has anti-Leishmania braziliensis activity. Parasitology 144:1179–90. Available at: https://www.cambridge.org/core/journals/parasitology/article/abs/nerolidol-the-main-constituent-of-piper-aduncum-essential-oil-has-antileishmania-braziliensis-activity/87ED96EB94286894C404F47574550578.
  • Chan W-K, Tan LT-H, Chan K-G, et al. (2016). Nerolidol: a sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules 21:529. doi: 10.3390/molecules21050529.
  • Chen Y, Zhao Y, Miao C, et al. (2022). Quercetin alleviates cyclophosphamide-induced premature ovarian insufficiency in mice by reducing mitochondrial oxidative stress and pyroptosis in granulosa cells. J Ovarian Res 15:138. doi: 10.1186/s13048-022-01080-3.
  • Chiang YW, Su CH, Sun HY, et al. (2022). Bisphenol A induced apoptosis via oxidative stress generation involved Nrf2/HO-1 pathway and mitochondrial dependent pathways in human retinal pigment epithelium (ARPE-19) cells. Environ Toxicol 37:131–41. doi: 10.1002/tox.23384.
  • Claiborne A, Fridovich I. (1979). Purification of the o-dianisidine peroxidase from Escherichia coli B. Physicochemical characterization and analysis of its dual catalatic and peroxidatic activities. J Biol Chem 254:4245–52.
  • Ebokaiwe AP, Obasi DO, Njoku RCC, et al. (2021). Cyclophosphamide instigated hepatic-renal oxidative/inflammatory stress aggravates immunosuppressive indoleamine 2,3-dioxygenase in male rats: abatement by quercetin. Toxicology 464:153027. doi: 10.1016/j.tox.2021.153027.
  • El Kiki SM, Omran MM, Mansour HH, Hasan HF. (2020). Metformin and/or low dose radiation reduces cardiotoxicity and apoptosis induced by cyclophosphamide through SIRT-1/SOD and BAX/Bcl-2 pathways in rats. Mol Biol Rep 47:5115–26. doi: 10.1007/s11033-020-05582-5.
  • El-Shabrawy M, Mishriki A, Attia H, et al. (2020). Protective effect of tolvaptan against cyclophosphamide-induced nephrotoxicity in rat models. Pharmacol Res Perspect 8:e00659. doi: 10.1002/prp2.659.
  • Fonsêca D. v, Salgado PRR, de Carvalho FL, et al. (2016). Nerolidol exhibits antinociceptive and anti-inflammatory activity: involvement of the GABAergic system and proinflammatory cytokines. Fundam Clin Pharmacol 30:14–22. Available at: https://pubmed.ncbi.nlm.nih.gov/26791997/. doi: 10.1111/fcp.12166.
  • Ghareeb MA, Sobeh M, El-Maadawy WH, et al. (2019). Chemical profiling of polyphenolics in Eucalyptus globulus and evaluation of its hepato–renal protective potential against cyclophosphamide induced toxicity in mice. Antioxidants 8:415. Available at: https://www.mdpi.com/2076-3921/8/9/415/htm. doi: 10.3390/antiox8090415.
  • Giordano C, Karasik O, King-Morris K, et al. (2015). Uric acid as a marker of kidney disease: review of the current literature. Dis Markers 2015:382918. doi: 10.1155/2015/382918.
  • Goudarzi M, Khodayar MJ, Hosseini Tabatabaei SMT, et al. (2017). Pretreatment with melatonin protects against cyclophosphamide-induced oxidative stress and renal damage in mice. Fundam Clin Pharmacol 31:625–35. doi: 10.1111/fcp.12303.
  • Grynberg K, Ma FY, Nikolic-Paterson DJ. (2017). The JNK signaling pathway in renal fibrosis. Front Physiol 8:829. doi: 10.3389/fphys.2017.00829.
  • Han B, Li S, Lv Y, et al. (2019). Dietary melatonin attenuates chromium-induced lung injury via activating the Sirt1/Pgc-1α/Nrf2 pathway. Food Funct 10:5555–65. Available at: https://pubmed.ncbi.nlm.nih.gov/31429458/. doi: 10.1039/c9fo01152h.
  • Han B, Lv Z, Han X, et al. (2022). Harmful effects of inorganic mercury exposure on kidney cells: mitochondrial dynamics disorder and excessive oxidative stress. Biol Trace Elem Res 200:1591–7. doi: 10.1007/s12011-021-02766-3.
  • Hayashi I, Tome Y, Shimosato Y. (1989). Thiosemicarbazide used after periodic acid makes methenamine silver staining of renal glomerular basement membranes faster and cleaner. Stain Technol 64:185–90. doi: 10.3109/10520298909106997.
  • Heeba GH, Mahmoud ME. (2016). Dual effects of quercetin in doxorubicin-induced nephrotoxicity in rats and its modulation of the cytotoxic activity of doxorubicin on human carcinoma cells. Environ Toxicol 31:624–36. Available at: https://pubmed.ncbi.nlm.nih.gov/25411067/.
  • Herrera GA, Lott RL. (2013). Silver stains in diagnostic renal pathology. J Histotechnol 19:219–23. doi: 10.1179/his1996193219.
  • Holmgren A. (2000). Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid Redox Signal 2:811–20. Available at: https://pubmed.ncbi.nlm.nih.gov/11213485/.
  • Hu HH, Chen DQ, Wang YN, et al. (2018). New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact 292:76–83. Available at: https://pubmed.ncbi.nlm.nih.gov/30017632/. doi: 10.1016/j.cbi.2018.07.008.
  • Hu J, Tong C, Zhou J, et al. (2022). Protective effects of Shorea roxburghii phenolic extract on nephrotoxicity induced by cyclophosphamide: impact on oxidative stress, biochemical and histopathological alterations. Chem Biodivers 19:e202200053. doi: 10.1002/cbdv.202200053.
  • Humphreys BD. (2018). Mechanisms of renal fibrosis. Annu Rev Physiol 80:309–26. Available at: https://pubmed.ncbi.nlm.nih.gov/29068765/.
  • Ijaz MU, Mustafa S, Batool R, et al. (2022). Ameliorative effect of herbacetin against cyclophosphamide-induced nephrotoxicity in rats via attenuation of oxidative stress, inflammation, apoptosis and mitochondrial dysfunction. Hum Exp Toxicol 41:9603271221132140. doi: 10.1177/09603271221132140.
  • Iqubal A, Haque SE, Sharma S, et al. (2018). Clinical updates on drug – induced cardiotoxicity. Int J Pharm Sci Res 9:16–26. Available at: https://ijpsr.com/bft-article/clinical-updates-on-drug-induced-cardiotoxicity/.
  • Iqubal A, Sharma S, Ansari MA, et al. (2019). Nerolidol attenuates cyclophosphamide-induced cardiac inflammation, apoptosis and fibrosis in Swiss Albino mice. Eur J Pharmacol 863:172666. doi: 10.1016/j.ejphar.2019.172666.
  • Iqubal A, Sharma S, Najmi AK, et al. (2019). Nerolidol ameliorates cyclophosphamide-induced oxidative stress, neuroinflammation and cognitive dysfunction: plausible role of Nrf2 and NF- κB. Life Sci 236:116867. doi: 10.1016/j.lfs.2019.116867.
  • Javed H, Azimullah S, Abul Khair SB, et al. (2016). Neuroprotective effect of nerolidol against neuroinflammation and oxidative stress induced by rotenone. BMC Neurosci 17:58. doi: 10.1186/s12868-016-0293-4.
  • Jiang X, Ren Z, Zhao B, et al. (2020). Ameliorating effect of pentadecapeptide derived from cyclina sinensis on cyclophosphamide-induced nephrotoxicity. Mar Drugs 18:462. doi: 10.3390/md18090462.
  • Jung Y, Kim H, Sun HM, et al. (2008). Dynein light chain LC8 negatively regulates NF-κB through the redox-dependent interaction with IκBα. J Biol Chem 283:23863–71. doi: 10.1074/jbc.M803072200.
  • Kang HM, Ahn SH, Choi P, et al. (2015). Defective fatty acid oxidation in renal tubular epithelial cells plays a key role in kidney fibrosis development. Nat Med 21:37–46. doi: 10.1038/nm.3762.
  • Khan SA, Rehman S, Nabi B, et al. (2020). Boosting the brain delivery of atazanavir through nanostructured lipid carrier-based approach for mitigating neuroaids. Pharmaceutics 12:1–26. Available at: https://pubmed.ncbi.nlm.nih.gov/33172119/. doi: 10.3390/pharmaceutics12111059.
  • Khan V, Sharma S, Bhandari U, et al. (2018). Raspberry ketone protects against isoproterenol-induced myocardial infarction in rats. Life Sci 194:205–12. Available at: https://pubmed.ncbi.nlm.nih.gov/29225109/. doi: 10.1016/j.lfs.2017.12.013.
  • Li J, Jiang H, Wu P, et al. (2021). Toxicological effects of deltamethrin on quail cerebrum: weakened antioxidant defense and enhanced apoptosis. Environ Pollut 286:117319. Available at: https://pubmed.ncbi.nlm.nih.gov/33990053/.
  • Li J, Qu X, Yao J, et al. (2010). Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes 59:2612–24. doi: 10.2337/db09-1631.
  • Li S, Baiyun R, Lv Z, et al. (2019). Exploring the kidney hazard of exposure to mercuric chloride in mice:Disorder of mitochondrial dynamics induces oxidative stress and results in apoptosis. Chemosphere 234:822–9. doi: 10.1016/j.chemosphere.2019.06.096.
  • Lin X, Yang F, Huang J, et al. (2020). Ameliorate effect of pyrroloquinoline quinone against cyclophosphamide-induced nephrotoxicity by activating the Nrf2 pathway and inhibiting the NLRP3 pathway. Life Sci 256:117901. doi: 10.1016/j.lfs.2020.117901.
  • López-Hernández FJ, López-Novoa JM. (2012). Role of TGF-β in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell Tissue Res 347:141–54. doi: 10.1007/s00441-011-1275-6.
  • Mahipal P, Pawar RS. (2017). Nephroprotective effect of Murraya koenigii on cyclophosphamide induced nephrotoxicity in rats. Asian Pac J Trop Med 10:808–12. doi: 10.1016/j.apjtm.2017.08.005.
  • Marklund S, Marklund G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–74. Available at: https://pubmed.ncbi.nlm.nih.gov/4215654/. doi: 10.1111/j.1432-1033.1974.tb03714.x.
  • Meng XM, Chung ACK, Lan HY. (2013). Role of the TGF-β/BMP-7/Smad pathways in renal diseases. Clin Sci (Lond) 124:243–54. Available at: /clinsci/article/124/4/243/69133/Role-of-the-TGF-BMP-7-Smad-pathways-in-renal. doi: 10.1042/CS20120252.
  • Mills BA, Roberts RW. (1979). Cyclophosphamide-induced cardiomyopathy. A report of two cases and review of the English literature. Cancer 43:2223–6. doi: 10.1002/1097-0142(197906)43:6<2223::AID-CNCR2820430610>3.0.CO;2-Y.
  • Miner JH. (2012). The glomerular basement membrane. Exp Cell Res 318:973–8. doi: 10.1016/j.yexcr.2012.02.031.
  • Ni YL, Shen HT, Su CH, et al. (2019). Nerolidol suppresses the inflammatory response during lipopolysaccharide-induced acute lung injury via the modulation of antioxidant enzymes and the AMPK/NRf-2/HO-1 pathway. Oxid Med Cell Longev 2019:9605980. doi: 10.1155/2019/9605980.
  • Nicholas AK, Jacques PB. (2005). Functions of basement membranes. Curr Top Membr 56:79–111.
  • Nicholas Cossey L, Dvanajscak Z, Larsen CP. (2020). A diagnostician’s field guide to crystalline nephropathies. Semin Diagn Pathol 37:135–42. doi: 10.1053/j.semdp.2020.02.002.
  • Nogueira A, Pires MJ, Oliveira PA. (2017). Pathophysiological mechanisms of renal fibrosis: a review of animal models and therapeutic strategies. In Vivo 31:1–22. doi: 10.21873/invivo.11019.
  • Ohkawa H, Ohishi N, Yagi K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–8. Available at: https://pubmed.ncbi.nlm.nih.gov/36810/. doi: 10.1016/0003-2697(79)90738-3.
  • Pan H, Wang H, Wang X, et al. (2012). The absence of Nrf2 enhances NF-κB-dependent inflammation following scratch injury in mouse primary cultured astrocytes. Mediators Inflamm 2012:217580. doi: 10.1155/2012/217580.
  • Raj V, Venkataraman B, Almarzooqi S, et al. (2020). Nerolidol mitigates colonic inflammation: an experimental study using both in vivo and in vitro models. Nutrients 12:1–28. doi: 10.3390/nu12072032.
  • Redza-Dutordoir M, Averill-Bates DA. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863:2977–92. doi: 10.1016/j.bbamcr.2016.09.012.
  • Rehman MU, Tahir M, Ali F, et al. (2012). Cyclophosphamide-induced nephrotoxicity, genotoxicity, and damage in kidney genomic DNA of Swiss albino mice: the protective effect of Ellagic acid. Mol Cell Biochem 365:119–27. doi: 10.1007/s11010-012-1250-x.
  • Salama RM, Nasr MM, Abdelhakeem JI, et al. (2022). Alogliptin attenuates cyclophosphamide-induced nephrotoxicity: a novel therapeutic approach through modulating MAP3K/JNK/SMAD3 signaling cascade. Drug Chem Toxicol 45:1254–63. Available at: https://pubmed.ncbi.nlm.nih.gov/32869669/. doi: 10.1080/01480545.2020.1814319.
  • Salazar JH. (2014). Overview of urea and creatinine. Lab Med 45:e19–e20. Available at: https://academic.oup.com/labmed/article/45/1/e19/2657879. doi: 10.1309/LM920SBNZPJRJGUT.
  • Sayed-Ahmed MM, Aldelemy ML, Al-Shabanah OA, et al. (2014). Inhibition of gene expression of carnitine palmitoyltransferase I and heart fatty acid binding protein in cyclophosphamide and ifosfamide-induced acute cardiotoxic rat models. Cardiovasc Toxicol 14:232–42. doi: 10.1007/s12012-014-9247-1.
  • Schreck R, Rieber P, Baeuerle PA. (1991). Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. Embo J 10:2247–58. doi: 10.1002/j.1460-2075.1991.tb07761.x.
  • Sedlak J, Lindsay RH. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205. Available at: https://pubmed.ncbi.nlm.nih.gov/4973948/. doi: 10.1016/0003-2697(68)90092-4.
  • Sharma AK, Kaur A, Kaur J, et al. (2021). Ameliorative role of diallyl disulfide against glycerol-induced nephrotoxicity in rats. J Pharm Bioallied Sci 13:129–35. doi: 10.4103/jpbs.JPBS_177_20.
  • Sharma S, Sharma P, Kulurkar P, et al. (2017). Iridoid glycosides fraction from Picrorhiza kurroa attenuates cyclophosphamide-induced renal toxicity and peripheral neuropathy via PPAR-γ mediated inhibition of inflammation and apoptosis. Phytomedicine 36:108–17. doi: 10.1016/j.phymed.2017.09.018.
  • Sheth V, Navik U, Maremanda K, et al. (2018). Effect of diethyldithiocarbamate in cyclophosphamide-induced nephrotoxicity: immunohistochemical study of superoxide dismutase 1 in rat. Indian J Pharmacol 50:4–11. doi: 10.4103/ijp.IJP_850_16.
  • Su L, Zhang J, Gomez H, et al. (2023). Mitochondria ROS and mitophagy in acute kidney injury. Autophagy 19:401–14. doi: 10.1080/15548627.2022.2084862.
  • Suthar JK, Vaidya A, Ravindran S. (2023). Toxic implications of silver nanoparticles on the central nervous system: a systematic literature review. J Appl Toxicol 43:4–21. doi: 10.1002/jat.4317.
  • Temel Y, Kucukler S, Yıldırım S, et al. (2020). Protective effect of chrysin on cyclophosphamide-induced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress, inflammation, and apoptosis. Naunyn Schmiedebergs Arch Pharmacol 393:325–37. doi: 10.1007/s00210-019-01741-z.
  • Trindade GDGG, Gomes MVLD, Silva LAS, et al. (2020). Anti-inflammatory effect of nano-encapsulated nerolidol on zymosan-induced arthritis in mice. Food Chem Toxicol 135:110958. doi: 10.1016/j.fct.2019.110958.
  • van Raaij S, van Swelm R, Bouman K, et al. (2018). Tubular iron deposition and iron handling proteins in human healthy kidney and chronic kidney disease. Sci Rep 8:1–13. Available at: https://www.nature.com/articles/s41598-018-27107-8.
  • Vindevoghel L, Lechleider RJ, Kon A, et al. (1998). SMAD3/4-dependent transcriptional activation of the human type VII collagen gene (COL7A1) promoter by transforming growth factor β. Proc Natl Acad Sci USA 95:14769–74. doi: 10.1073/pnas.95.25.14769.
  • Waz S, Heeba GH, Hassanin SO, et al. (2021). Nephroprotective effect of exogenous hydrogen sulfide donor against cyclophosphamide-induced toxicity is mediated by Nrf2/HO-1/NF-κB signaling pathway. Life Sci 264:118630. doi: 10.1016/j.lfs.2020.118630.
  • Wu CF, Chiang WC, Lai CF, et al. (2013). Transforming growth factor β-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis. Am J Pathol 182:118–31. Available at: http://ajp.amjpathol.org/article/S0002944012007225/fulltext. doi: 10.1016/j.ajpath.2012.09.009.
  • Yung S, Zhang Q, Chau MKM, et al. (2015). Distinct effects of mycophenolate mofetil and cyclophosphamide on renal fibrosis in NZBWF1/J mice. Autoimmunity 48:471–87. doi: 10.3109/08916934.2015.1054027.
  • Zhang Y, Chang J, Gao H, et al. (2021). Huaiqihuang (HQH) granule alleviates cyclophosphamide-induced nephrotoxicity via suppressing the MAPK/NF-κB pathway and NLRP3 inflammasome activation Huaiqihuang (HQH) granule alleviates cyclophosphamide-induced nephrotoxicity via suppressing the MAPK/NF-jB pathway and NLRP3 inflammasome activation. Pharm Biol 59:1425–31. doi: 10.1080/13880209.2021.1990356.
  • Zhong H, May MJ, Jimi E, et al. (2002). The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol Cell 9:625–36. Available at: https://pubmed.ncbi.nlm.nih.gov/11931769/. doi: 10.1016/s1097-2765(02)00477-x.
  • Zhou L, Fu P, Huang XR, et al. (2010). Mechanism of chronic aristolochic acid nephropathy: role of Smad3. Am J Physiol Renal Physiol 298:F1006–1017. doi: 10.1152/ajprenal.00675.2009.