1,064
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Novel nano-carriers with N-formylmethionyl-leucyl-phenylalanine-modified liposomes improve effects of C16-angiopoietin 1 in acute animal model of multiple sclerosis

, , , , , & show all
Article: 2241664 | Received 27 Oct 2022, Accepted 17 Jul 2023, Published online: 06 Aug 2023

References

  • Aarts S, Seijkens TTP, Kusters PJH, et al. (2017). Inhibition of CD40-TRAF6 interactions by the small molecule inhibitor 6877002 reduces neuroinflammation. J Neuroinflamm 14:1. doi: 10.1186/s12974-017-0875-9.
  • Arnon R, Aharoni R. (2009). Neuroprotection and neurogeneration in MS and its animal model EAE effected by glatiramer acetate. J Neural Transm (Vienna) 116:1443–19. doi: 10.1007/s00702-009-0272-3.
  • Cai HY, Fu XX, Jiang H, et al. (2021). Adjusting vascular permeability, leukocyte infiltration, and microglial cell activation to rescue dopaminergic neurons in rodent models of Parkinson’s disease. NPJ Parkinsons Dis 7:91. doi: 10.1038/s41531-021-00233-3.
  • Cai HY, Tian KW, Zhang YY, et al. (2018). Angiopoietin-1 and ανβ3 integrin peptide promote the therapeutic effects of L-serine in an amyotrophic lateral sclerosis/Parkinsonism dementia complex model. Aging (Albany NY) 10:3507–27. doi: 10.18632/aging.101661.
  • Chen H, Fu X, Jiang J, et al. (2019). C16 peptide promotes vascular growth and reduces inflammation in a neuromyelitis optica model. Front Pharmacol 10:1373. doi: 10.3389/fphar.2019.01373.
  • Cui YH, Le Y, Gong W, et al. (2002). Bacterial lipopolysaccharide selectively up-regulates the function of the chemotactic peptide receptor formyl peptide receptor 2 in murine microglial cells. J Immunol 168:434–42. doi: 10.4049/jimmunol.168.1.434.
  • Eng LF, Ghirnikar RS, Lee YL. (1996). Inflammation in EAE: role of chemokine/cytokine expression by resident and infiltrating cells. Neurochem Res 21:511–25. doi: 10.1007/BF02527717.
  • Fang M, Sun Y, Hu Z, et al. (2013). C16 peptide shown to prevent leukocyte infiltration and alleviate detrimental inflammation in acute allergic encephalomyelitis model. Neuropharmacology 70:83–99. doi: 10.1016/j.neuropharm.2013.01.010.
  • Fu X, Chen H, Han S. (2020). C16 peptide and angiopoietin-1 protect against LPS-induced BV-2 microglial cell inflammation. Life Sci 256:117894. doi: 10.1016/j.lfs.2020.117894.
  • Fu XX, Cai HY, Jiang H, et al. (2021). Combined treatment with C16 peptide and angiopoietin-1 confers neuroprotection and reduces inflammation in 3-nitropropionic acid-induced dystonia mice. Aging (Albany NY) 13:19048–63. doi: 10.18632/aging.203354.
  • Gaillard PJ, Appeldoorn CC, Rip J, et al. (2012). Enhanced brain delivery of liposomal methylprednisolone improved therapeutic efficacy in a model of neuroinflammation. J Control Release 164:364–9. doi: 10.1016/j.jconrel.2012.06.022.
  • Han S, Arnold SA, Sithu SD, et al. (2010). Rescuing vasculature with intravenous angiopoietin-1 and alpha v beta 3 integrin peptide is ­protective after spinal cord injury. Brain 133:1026–42. doi: 10.1093/brain/awq034.
  • Han S, Zhang F, Hu Z, et al. (2013). Dose-dependent anti-inflammatory and neuroprotective effects of an ανβ3 integrin-binding peptide. Mediators Inflamm 2013:268486. doi: 10.1155/2013/268486.
  • Herz J, Zipp F, Siffrin V. (2010). Neurodegeneration in autoimmune CNS inflammation. Exp Neurol 225:9–17. doi: 10.1016/j.expneurol.2009.11.019.
  • Hu Y, Zhang J, Hu H, et al. (2020). Gefitinib encapsulation based on nano-liposomes for enhancing the curative effect of lung cancer. Cell Cycle 19:3581–94. doi: 10.1080/15384101.2020.1852756.
  • Jiang H, Zhang F, Yang J, et al. (2014). Angiopoietin-1 ameliorates inflammation-induced vascular leakage and improves functional impairment in a rat model of acute experimental autoimmune encephalomyelitis. Exp Neurol 261:245–57. doi: 10.1016/j.expneurol.2014.05.013.
  • Karpus WJ. (2020). Cytokines and chemokines in the pathogenesis of experimental autoimmune encephalomyelitis. J Immunol 204:316–26. doi: 10.4049/jimmunol.1900914.
  • López-Vales R, David S. (2019). Bioactive lipids in inflammation after central nervous system injury. Adv Exp Med Biol 1127:181–94. doi: 10.1007/978-3-030-11488-6_12.
  • Liang B, Wang X, Zhang N, et al. (2015). Angiotensin-(1-7) attenuates angiotensin II-induced ICAM-1, VCAM-1, and MCP-1 expression via the MAS receptor through suppression of P38 and NF-κB pathways in HUVECs. Cell Physiol Biochem 35:2472–82. doi: 10.1159/000374047.
  • Ma X, Jiang Y, Wu A, et al. (2010). Berberine attenuates experimental autoimmune encephalomyelitis in C57 BL/6 mice. PLoS One 5:e13489. doi: 10.1371/journal.pone.0013489.
  • Nakazato Y, Fujita Y, Nakazato M, et al. (2020). Neurons promote encephalitogenic CD4(+) lymphocyte infiltration in experimental autoimmune encephalomyelitis. Sci Rep 10:7354. doi: 10.1038/s41598-020-64363-z.
  • Pierson ER, Wagner CA, Goverman JM. (2018). The contribution of neutrophils to CNS autoimmunity. Clin Immunol 189:23–8. doi: 10.1016/j.clim.2016.06.017.
  • Qin Y, Li ZW, Yang Y, et al. (2014). Liposomes formulated with fMLP-modified cholesterol for enhancing drug concentration at inflammatory sites. J Drug Target 22:165–74. doi: 10.3109/1061186X.2013.851683.
  • Wang B, Tian KW, Zhang F, et al. (2016). Angiopoietin-1 and C16 peptide attenuate vascular and inflammatory responses in experimental allergic encephalomyelitis. CNS Neurol Disord Drug Targets 15:496–513. doi: 10.2174/1871527314666150821112546.
  • Wang H, Newton G, Wu  , et al. (2021). CD47 antibody blockade suppresses microglia-dependent phagocytosis and monocyte transition to macrophages, impairing recovery in EAE. JCI Insight 6:e148719. doi: 10.1172/jci.insight.148719.