658
Views
0
CrossRef citations to date
0
Altmetric
Drug Delivery

An update on the advances in the field of nanostructured drug delivery systems for a variety of orthopedic applications

, , , , , , , & show all
Article: 2241667 | Received 30 Apr 2023, Accepted 09 Jul 2023, Published online: 01 Dec 2023

References

  • Ahn S, Jung SY, Lee SJ. (2013). Gold nanoparticle contrast agents in advanced X-ray imaging technologies. Molecules 18:1–16. doi:10.3390/molecules18055858.
  • Aizik G, Waiskopf N, Agbaria M, et al. (2019). Liposomes of quantum dots configured for passive and active delivery to tumor tissue. Nano Lett 19:5844–52. doi:10.1021/acs.nanolett.9b01027.
  • Al Thaher Y, Perni S, Prokopovich P. (2017). Nano-carrier based drug delivery systems for sustained antimicrobial agent release from orthopaedic cementous material. Adv Colloid Interface Sci 249:234–47. doi:10.1016/j.cis.2017.04.017.
  • Alp E, Çirak T, Demirbilek M, et al. (2017). Targeted delivery of etoposide to osteosarcoma cells using poly (3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV) nanoparticles. Turk J Biol 41:719–33. doi:10.3906/biy-1612-17.
  • Alp E, Damkaci F, Guven E, et al. (2019). Starch nanoparticles for delivery of the histone deacetylase inhibitor CG-1521 in breast cancer treatment. Int J Nanomed 14:1335–46. doi:10.2147/IJN.S191837.
  • Andronescu E, et al. (2010). Synthesis and characterization of collagen/hydroxyapatite: magnetite composite material for bone cancer treatment. J Mater Sci Mater Med 21:2237–42.
  • Asafo-Adjei TA, Chen AJ, Najarzadeh A, et al. (2016). Advances in controlled drug delivery for treatment of osteoporosis. Curr Osteoporos Rep 14:226–38. doi:10.1007/s11914-016-0321-4.
  • Aşık MD, Kaplan M, Yalınay M, et al. (2019). Development of a sequential antibiotic releasing system for two-stage total joint replacement surgery. J Biomed Nanotechnol 15:2193–201. doi:10.1166/jbn.2019.2850.
  • Asil SM, et al. (2020). Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomater Sci 8:4109–28.
  • Atıcı T, Şahin N, Çavun S, et al. (2018). Antibiotic release and antibacterial efficacy in cement spacers and cement beads impregnated with different techniques: in vitro study. Eklem Hastalik Cerrahisi 29:71–8. doi:10.5606/ehc.2018.59021.
  • Au KM, Satterlee A, Min Y, et al. (2016). Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: Turning a bone antiresorptive agent into an anticancer therapeutic. Biomater 82:178–93. doi:10.1016/j.biomaterials.2015.12.018.
  • Bajpayee AG, Scheu M, Grodzinsky AJ, et al. (2015). A rabbit model demonstrates the influence of cartilage thickness on intra-articular drug delivery and retention within cartilage. J Orthop Res 33:660–7. doi:10.1002/jor.22841.
  • Bakand S, Hayes A, Dechsakulthorn F. (2012). Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal Toxicol 24:125–35. doi:10.3109/08958378.2010.642021.
  • Bhandari KH, Asghar W, Newa M, et al. (2015). Evaluation of bone targeting salmon calcitonin analogues in rats developing osteoporosis and adjuvant arthritis. Curr Drug Deliv 12:98–107. doi:10.2174/156720181201150310154026.
  • Bhattarai DP, Kim MH, Park H, et al. (2020). Coaxially fabricated polylactic acid electrospun nanofibrous scaffold for sequential release of tauroursodeoxycholic acid and bone morphogenic protein2 to stimulate angiogenesis and bone regeneration. Chem Eng J 389:123470. doi:10.1016/j.cej.2019.123470.
  • Bhirde AA, Patel S, Sousa AA, et al. (2010). Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice. Nanomed (Lond) 5:1535–46. doi:10.2217/nnm.10.90.
  • Bian D, Zhou W, Liu Y, et al. (2016). Fatigue behaviors of HP-Mg, Mg–Ca and Mg–Zn–Ca biodegradable metals in air and simulated body fluid. Acta Biomater 41:351–60. doi:10.1016/j.actbio.2016.05.031.
  • Bozkurt HH, Tokgöz MA, Yapar A, et al. (2019). What is the importance of canal-to-diaphysis ratio on osteoporosis-related hip fractures? Eklem Hastalik Cerrahisi 30:296–300. doi:10.5606/ehc.2019.70745.
  • Bull E, Madani SY, Sheth R, et al. (2014). Stem cell tracking using iron oxide nanoparticles. Int J Nanomed 9:1641–53. doi:10.2147/IJN.S48979.
  • Burdușel AC, et al. (2022). Inorganic nanoparticles in bone healing applications. Pharmaceutics 14. doi:10.3390/pharmaceutics14040770.
  • Cacciatore FA, Brandelli A, Malheiros PDS. (2021). Combining natural antimicrobials and nanotechnology for disinfecting food surfaces and control microbial biofilm formation. Crit Rev Food Sci Nutr 61:3771–82. doi:10.1080/10408398.2020.1806782.
  • Çağlar Ö, Tokgözoğlu M, Akgün RC, et al. (2020). Low-dose vancomycin-loaded cement spacer for two-stage revision of infected total hip arthroplasty. Jt Dis Relat Surg 31:449–55. doi:10.5606/ehc.2020.76108.
  • Chang M-C, et al. (2021). Hyaluronan-loaded liposomal dexamethasone–diclofenac nanoparticles for local osteoarthritis treatment. Int J Mol Sci 22:665. doi:10.3390/ijms22020665.
  • Chen C, Wang S, Wang J, et al. (2023). Nanosized drug delivery strategies in osteosarcoma chemotherapy. APL Bioeng 7:011501. doi:10.1063/5.0137026.
  • Chen L, Tiwari SR, Zhang Y, et al. (2021). Facile synthesis of hollow MnO2 nanoparticles for reactive oxygen species scavenging in osteoarthritis. ACS Biomater Sci Eng 7:1686–92. doi:10.1021/acsbiomaterials.1c00005.
  • Chen X, Zhu Q, Xu X, et al. (2019). Sequentially site-specific delivery of apoptotic protein and tumor-suppressor gene for combination cancer therapy. Small 15:e1902998. doi:10.1002/smll.201902998.
  • Chen Y, Wu X, Li J, et al. (2022). Bone-targeted nanoparticle drug delivery system: an emerging strategy for bone-related disease. Front Pharmacol 13:909408. doi:10.3389/fphar.2022.909408.
  • Cheng G, Yin C, Tu H, et al. (2019). Controlled co-delivery of growth factors through layer-by-layer assembly of core-shell nanofibers for improving bone regeneration. ACS Nano 13:6372–82. doi:10.1021/acsnano.8b06032.
  • Cheng L-C, Jiang X, Wang J, et al. (2013). Nano–bio effects: interaction of nanomaterials with cells. Nanoscale 5:3547–69. doi:10.1039/c3nr34276j.
  • Cheng X, Cheng G, Xing X, et al. (2020). Controlled release of adenosine from core-shell nanofibers to promote bone regeneration through STAT3 signaling pathway. J Control Release 319:234–45. doi:10.1016/j.jconrel.2019.12.048.
  • Christenson EM, Anseth KS, van den Beucken JJJP, et al. (2007). Nanobiomaterial applications in orthopedics. J Orthop Res 25:11–22. doi:10.1002/jor.20305.
  • Cross LM, Thakur A, Jalili NA, et al. (2016). Nanoengineered biomaterials for repair and regeneration of orthopedic tissue interfaces. Acta Biomater 42:2–17. doi:10.1016/j.actbio.2016.06.023.
  • Dave V, Sharma R, Gupta C, et al. (2020). Folic acid modified gold nanoparticle for targeted delivery of Sorafenib tosylate towards the treatment of diabetic retinopathy. Colloids Surf B Biointerf 194:111151. doi:10.1016/j.colsurfb.2020.111151.
  • de Guzman RC, Saul JM, Ellenburg MD, et al. (2013). Bone regeneration with BMP-2 delivered from keratose scaffolds. Biomater 34:1644–56. doi:10.1016/j.biomaterials.2012.11.002.
  • El-Ghannam A. (2005). Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices 2:87–101. doi:10.1586/17434440.2.1.87.
  • Famta P, Famta M, Kaur J, et al. (2020). Protecting the normal physiological functions of articular and periarticular structures by aurum nanoparticle-based formulations: an up-to-date insight. AAPS PharmSciTech 21:95. doi:10.1208/s12249-020-1636-0.
  • Fan AM, Alexeeff G. (2010). Nanotechnology and nanomaterials: toxicology, risk assessment, and regulations. J Nanosci Nanotechnol 10:8646–8657. doi:10.1166/jnn.2010.2493.
  • Farra R, Sheppard NF, McCabe L, et al. (2012). First-in-human testing of a wirelessly controlled drug delivery microchip. Sci Transl Med 4:122ra21. doi:10.1126/scitranslmed.3003276.
  • Feynman R. (2018). There’s plenty of room at the bottom. In: Feynman and computation. Michigan state university, 63–76.
  • Fischer HC, Chan WC. (2007). Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18:565–571. doi:10.1016/j.copbio.2007.11.008.
  • Ganesh N, Ashokan A, Rajeshkannan R, et al. (2014). Magnetic resonance functional nano-hydroxyapatite incorporated poly(caprolactone) composite scaffolds for in situ monitoring of bone tissue regeneration by MRI. Tissue Eng Part A 20:2783–94. doi:10.1089/ten.TEA.2014.0161.
  • Garimella R, Eltorai AE. (2017). Nanotechnology in orthopedics. J Orthop 14:30–3. doi:10.1016/j.jor.2016.10.026.
  • Ghezzi D, Antognazza MR, Maccarone R, et al. (2013). A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nat Photonics 7:400–6. doi:10.1038/nphoton.2013.34.
  • Guo P, Xue HY, Wong HL. (2018). Therapeutic nanotechnology for bone infection treatment – state of the art. Curr Drug Deliv 15:941–52. doi:10.2174/1567201815666180228162949.
  • Güven E. (2020). Lipid-based nanoparticles in the treatment of erectile dysfunction. Int J Impot Res 32:578–86. doi:10.1038/s41443-020-0235-7.
  • Hassani Besheli N, Mottaghitalab F, Eslami M, et al. (2017). Sustainable release of vancomycin from silk fibroin nanoparticles for treating severe bone infection in rat tibia osteomyelitis model. ACS Appl Mater Interf 9:5128–38. doi:10.1021/acsami.6b14912.
  • He T, Zhang C, Vedadghavami A, et al. (2020). Multi-arm avidin nano-construct for intra-cartilage delivery of small molecule drugs. J Control Release 318:109–23. doi:10.1016/j.jconrel.2019.12.020.
  • Hennig S, van de Linde S, Lummer M, et al. (2015). Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes. Nano Lett 15:1374–81. doi:10.1021/nl504660t.
  • Hm J, et al. (2019). Nanomaterials for bone tissue regeneration: updates and future perspectives. Nanomed (Lond) 14:2987–3006.
  • Hoexter DL. (2002). Bone regeneration graft materials. J Oral Implantol 28:290–4. doi:10.1563/1548-1336(2002)028<0290:BRGM>2.3.CO;2.
  • Hsieh M-F, Li JK-J, Lin C-AJ, et al. (2009). Tracking of cellular uptake of hydrophilic CdSe/ZnS quantum dots/hydroxyapatite composites nanoparticles in MC3T3-E1 osteoblast cells. J Nanosci Nanotechnol 9:2758–62. doi:10.1166/jnn.2009.463.
  • Hu Q, Chen F, Li B, et al. (2006). Preparation of three-dimensional nano-magnetite/chitosan rod. Mater Lett 60:368–70. doi:10.1016/j.matlet.2005.08.062.
  • Jackson A. (2016). Neural interfaces take another step forward. Nature 539:177–8. doi:10.1038/539177a.
  • Jia Z, Zhang Y, Chen YH, et al. (2015). Simvastatin prodrug micelles target fracture and improve healing. J Control Release 200:23–34. doi:10.1016/j.jconrel.2014.12.028.
  • Jiang L, Gao L. (2006). Fabrication and characterization of carbon nanotube–titanium nitride composites with enhanced electrical and electrochemical properties. J Am Ceramic Soc 89:156–61. doi:10.1111/j.1551-2916.2005.00687.x.
  • Jin T, Wu D, Liu X-M, et al. (2020). Intra-articular delivery of celastrol by hollow mesoporous silica nanoparticles for pH-sensitive anti-inflammatory therapy against knee osteoarthritis. J Nanobiotech 18:94. doi:10.1186/s12951-020-00651-0.
  • Johnson K, Zhu S, Tremblay MS, et al. (2012). A stem cell–based approach to cartilage repair. Science 336:717–21. doi:10.1126/science.1215157.
  • Kang C, Jung E, Hyeon H, et al. (2020). Acid-activatable polymeric curcumin nanoparticles as therapeutic agents for osteoarthritis. Nanomed 23:102104. doi:10.1016/j.nano.2019.102104.
  • Kang M-L, Kim J-E, Im G-I. (2016). Thermoresponsive nanospheres with independent dual drug release profiles for the treatment of osteoarthritis. Acta Biomater 39:65–78. doi:10.1016/j.actbio.2016.05.005.
  • Kansara M, Thomas DM. (2007). Molecular pathogenesis of osteosarcoma. DNA Cell Biol 26:1–18. doi:10.1089/dna.2006.0505.
  • Kavaz D, Odabaş S, Güven E, et al. (2010). Bleomycin loaded magnetic chitosan nanoparticles as multifunctional nanocarriers. J Bioactive Compatible Polym 25:305–18. doi:10.1177/0883911509360735.
  • Kılıçay E, Demirbilek M, Türk M, et al. (2011). Preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHX) based nanoparticles for targeted cancer therapy. Eur J Pharm Sci 44:310–20. doi:10.1016/j.ejps.2011.08.013.
  • Kumar S, Nehra M, Kedia D, et al. (2020). Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. Mater Sci Eng C Mater Biol Appl 106:110154. doi:10.1016/j.msec.2019.110154.
  • Laurencin CT, Ambrosio AM, Borden MD, et al. (1999). Tissue engineering: orthopedic applications. Annu Rev Biomed Eng 1:19–46. doi:10.1146/annurev.bioeng.1.1.19.
  • Li B, Jia D, Zhou Y, et al. (2006). In situ hybridization to chitosan/magnetite nanocomposite induced by the magnetic field. J Magn Magn Mater 306:223–7. doi:10.1016/j.jmmm.2006.01.250.
  • Li C, Yan B. (2020). Opportunities and challenges of phyto-nanotechnology. Environ Sci: Nano 7:2863–74. doi:10.1039/D0EN00729C.
  • Li K, Li D, Zhao L, et al. (2020). Calcium-mineralized polypeptide nanoparticle for intracellular drug delivery in osteosarcoma chemotherapy. Bioact Mater 5:721–31. doi:10.1016/j.bioactmat.2020.04.010.
  • Li X, et al. (2012). Biocompatibility and toxicity of nanoparticles and nanotubes. J Nanomater 2012:6.
  • Liang H, Chen K, Xie J, et al. (2023). A bone-penetrating precise controllable drug release system enables localized treatment of osteoporotic fracture prevention via modulating osteoblast-osteoclast communication. Small 19:e2207195. doi:10.1002/smll.202207195.
  • Liang Y, Xu X, Li X, et al. (2020). Chondrocyte-targeted microRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy. ACS Appl Mater Interf 12:36938–47. doi:10.1021/acsami.0c10458.
  • Limongi T, et al. (2020). Drug delivery applications of three-dimensional printed (3DP) mesoporous scaffolds. Pharmaceutics 12. doi:10.3390/pharmaceutics12090851.
  • Lin JB, Poh S, Panitch A. (2016). Controlled release of anti-inflammatory peptides from reducible thermosensitive nanoparticles suppresses cartilage inflammation. Nanomed 12:2095–100. doi:10.1016/j.nano.2016.05.010.
  • Lin Y, Taylor S, Li H, et al. (2004). Advances toward bioapplications of carbon nanotubes. J Mater Chem 14:527–41. doi:10.1039/b314481j.
  • Liu Y, Zou R, Wang Z, et al. (2018). Exosomal KLF3-AS1 from hMSCs promoted cartilage repair and chondrocyte proliferation in osteoarthritis. Biochem J 475:3629–38. doi:10.1042/BCJ20180675.
  • Lu C, Han HD, Mangala LS, et al. (2010). Regulation of tumor angiogenesis by EZH2. Cancer Cell 18:185–97. doi:10.1016/j.ccr.2010.06.016.
  • Majestic BJ, et al. (2010). A review of selected engineered nanoparticles in the atmosphere: sources, transformations, and techniques for sampling and analysis. Int J Occupational Environ Health 16:488–507. doi:10.1179/oeh.2010.16.4.488.
  • Mamun MAA, Yuce MR. (2020). Recent progress in nanomaterial enabled chemical sensors for wearable environmental monitoring applications. Adv Funct Mater 30:2005703. doi:10.1002/adfm.202005703.
  • Mao Y, Zhao Y, Guan J, et al. (2020). Electrospun fibers: an innovative delivery method for the treatment of bone diseases. Expert Opin Drug Deliv 17:993–1005. doi:10.1080/17425247.2020.1767583.
  • Marin E, Tapeinos C, Lauciello S, et al. (2020). Encapsulation of manganese dioxide nanoparticles into layer-by-layer polymer capsules for the fabrication of antioxidant microreactors. Mater Sci Eng C Mater Biol Appl 117:111349. doi:10.1016/j.msec.2020.111349.
  • Martin AR, Patel JM, Locke RC, et al. (2021). Nanofibrous hyaluronic acid scaffolds delivering TGF-β3 and SDF-1α for articular cartilage repair in a large animal model. Acta Biomater 126:170–82. doi:10.1016/j.actbio.2021.03.013.
  • Martínez-Carmona M, Izquierdo-Barba I, Colilla M, et al. (2019). Concanavalin A-targeted mesoporous silica nanoparticles for infection treatment. Acta Biomater 96:547–56. doi:10.1016/j.actbio.2019.07.001.
  • McMasters J, Poh S, Lin JB, et al. (2017). Delivery of anti-inflammatory peptides from hollow PEGylated poly (NIPAM) nanoparticles reduces inflammation in an ex vivo osteoarthritis model. J Control Release 258:161–70. doi:10.1016/j.jconrel.2017.05.008.
  • Mohamed M, Borchard G, Jordan O. (2012). In situ forming implants for local chemotherapy and hyperthermia of bone tumors. J Drug Delivery Sci Technol 22:393–408. doi:10.1016/S1773-2247(12)50066-3.
  • Morigi V, Tocchio A, Bellavite Pellegrini C, et al. (2012). Nanotechnology in medicine: from inception to market domination. J Drug Deliv 2012:389485. doi:10.1155/2012/389485.
  • Murakami S, Hosono T, Jeyadevan B, et al. (2008). Hydrothermal synthesis of magnetite/hydroxyapatite composite material for hyperthermia therapy for bone cancer. J Ceram Soc Japan 116:950–4. doi:10.2109/jcersj2.116.950.
  • Murthy A, Rao Ravi P, Kathuria H, et al. (2020). Oral bioavailability enhancement of raloxifene with nanostructured lipid carriers. Nanomater 10:1085. doi:10.3390/nano10061085.
  • Nagai N, Ogata F, Otake H, et al. (2018). Design of a transdermal formulation containing raloxifene nanoparticles for osteoporosis treatment. Int J Nanomed 13:5215–29. doi:10.2147/IJN.S173216.
  • Newman P, Minett A, Ellis-Behnke R, et al. (2013). Carbon nanotubes: their potential and pitfalls for bone tissue regeneration and engineering. Nanomed 9:1139–58. doi:10.1016/j.nano.2013.06.001.
  • Oberdörster G, Oberdörster E, Oberdörster J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–39. doi:10.1289/ehp.7339.
  • Ovid’ko I, Sheinerman A. (2011). Micromechanisms for improved fracture toughness in nanoceramics. Rev Adv Mater Sci 29:105–25.
  • Parizek M, Douglas TEL, Novotna K, et al. (2012). Nanofibrous poly (lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering. Int J Nanomed 7:1931–51. doi:10.2147/IJN.S26665.
  • Patra JK, Das G, Fraceto LF, et al. (2018). Nano based drug delivery systems: recent developments and future prospects. J Nanobiotech 16:71. doi:10.1186/s12951-018-0392-8.
  • Popovtzer R, Agrawal A, Kotov NA, et al. (2008). Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8:4593–6. doi:10.1021/nl8029114.
  • Posadowska U, Parizek M, Filova E, et al. (2015). Injectable nanoparticle-loaded hydrogel system for local delivery of sodium alendronate. Int J Pharm 485:31–40. doi:10.1016/j.ijpharm.2015.03.003.
  • Potapova I. (2013). Functional imaging in diagnostic of orthopedic implant-associated infections. Diagnostics (Basel) 3:356–71. doi:10.3390/diagnostics3040356.
  • Qadri S, Haik Y, Mensah-Brown E, et al. (2017). Metallic nanoparticles to eradicate bacterial bone infection. Nanomed 13:2241–50. doi:10.1016/j.nano.2017.05.013.
  • Qayoom I, Verma R, Murugan PA, et al. (2020). A biphasic nanohydroxyapatite/calcium sulphate carrier containing Rifampicin and Isoniazid for local delivery gives sustained and effective antibiotic release and prevents biofilm formation. Sci Rep 10:14128. doi:10.1038/s41598-020-70726-3.
  • Qu D, Mosher CZ, Boushell MK, et al. (2015). Engineering complex orthopaedic tissues via strategic biomimicry. Ann Biomed Eng 43:697–717. doi:10.1007/s10439-014-1190-6.
  • Que Y, Yang Y, Zafar H, et al. (2022). Tetracycline-grafted mPEG-PLGA micelles for bone-targeting and osteoporotic improvement. Front Pharmacol 13:993095. doi:10.3389/fphar.2022.993095.
  • Rahmani Del Bakhshayesh A, Akbarzadeh A, Alihemmati A, et al. (2020). Preparation and characterization of novel anti-inflammatory biological agents based on piroxicam-loaded poly-ε-caprolactone nano-particles for sustained NSAID delivery. Drug Deliv 27:269–82. doi:10.1080/10717544.2020.1716881.
  • Raina DB, et al. (2020). A facile one-stage treatment of critical bone defects using a calcium sulfate/hydroxyapatite biomaterial providing spatiotemporal delivery of bone morphogenic protein-2 and zoledronic acid. Sci Adv 6. doi:10.1126/sciadv.abc1779.
  • Raina DB, Liu Y, Jacobson OLP, et al. (2020). Bone mineral as a drug-seeking moiety and a waste dump: a review. Bone Joint Res 9:709–18. doi:10.1302/2046-3758.910.BJR-2020-0097.R1.
  • Reddi AH, Cunningham NS. (1990). Bone induction by osteogenin and bone morphogenetic proteins. Biomater 11:33–4.
  • Ryu T-K, Kang R-H, Jeong K-Y, et al. (2016). Bone-targeted delivery of nanodiamond-based drug carriers conjugated with alendronate for potential osteoporosis treatment. J Control Release 232:152–60. doi:10.1016/j.jconrel.2016.04.025.
  • Sacchetti C, Liu-Bryan R, Magrini A, et al. (2014). Polyethylene-glycol-modified single-walled carbon nanotubes for intra-articular delivery to chondrocytes. ACS Nano 8:12280–91. doi:10.1021/nn504537b.
  • Salamanna F, Gambardella A, Contartese D, et al. (2021). Nano-based biomaterials as drug delivery systems against osteoporosis: a systematic review of preclinical and clinical evidence. Nanomater 11:530. doi:10.3390/nano11020530.
  • Salgado AJ, et al. (2013). Tissue engineering and regenerative medicine: past, present, and future. Int Rev Neurobiol 108:1–33.
  • Scaini D, Ballerini L. (2018). Nanomaterials at the neural interface. Curr Opin Neurobiol 50:50–5. doi:10.1016/j.conb.2017.12.009.
  • Sharmeen S, Rahman AFMM, Lubna MM, et al. (2018). Polyethylene glycol functionalized carbon nanotubes/gelatin-chitosan nanocomposite: an approach for significant drug release. Bioact Mater 3:236–44. doi:10.1016/j.bioactmat.2018.03.001.
  • Shi J, Votruba AR, Farokhzad OC, et al. (2010). Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10:3223–30. doi:10.1021/nl102184c.
  • Sirivisoot S, Webster TJ. (2008). Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation. Nanotech 19:295101. doi:10.1088/0957-4484/19/29/295101.
  • Smith WR, Hudson PW, Ponce BA, et al. (2018). Nanotechnology in orthopedics: a clinically oriented review. BMC Musculoskelet Disord 19:67. doi:10.1186/s12891-018-1990-1.
  • Soiberman U, Kambhampati SP, Wu T, et al. (2017). Subconjunctival injectable dendrimer-dexamethasone gel for the treatment of corneal inflammation. Biomater 125:38–53. doi:10.1016/j.biomaterials.2017.02.016.
  • Song W, Seta J, Chen L, et al. (2017). Doxycycline-loaded coaxial nanofiber coating of titanium implants enhances osseointegration and inhibits Staphylococcus aureus infection. Biomed Mater 12:045008. doi:10.1088/1748-605X/aa6a26.
  • Steckiewicz KP, Inkielewicz-Stepniak I. (2020). Modified nanoparticles as potential agents in bone diseases: cancer and implant-related complications. Nanomater 10:658. doi:10.3390/nano10040658.
  • Stevens MM. (2008). Biomaterials for bone tissue engineering. Mater Today 11:18–25. doi:10.1016/S1369-7021(08)70086-5.
  • Stravinskas M, Tarasevicius S, Laukaitis S, et al. (2018). A ceramic bone substitute containing gentamicin gives good outcome in trochanteric hip fractures treated with dynamic hip screw and in revision of total hip arthroplasty: a case series. BMC Musculoskelet Disord 19:438. doi:10.1186/s12891-018-2360-8.
  • Sun H, Lv L, Bai Y, et al. (2018). Nanotechnology-enabled materials for hemostatic and anti-infection treatments in orthopedic surgery. Int J Nanomed 13:8325–38. doi:10.2147/IJN.S173063.
  • Supronowicz PR, Ajayan PM, Ullmann KR, et al. (2002). Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation. J Biomed Mater Res 59:499–506. doi:10.1002/jbm.10015.
  • Suva LJ, Washam C, Nicholas RW, et al. (2011). Bone metastasis: mechanisms and therapeutic opportunities. Nat Rev Endocrinol 7:208–18. doi:10.1038/nrendo.2010.227.
  • Tang Q, Lim T, Shen L-Y, et al. (2021). Well-dispersed platelet lysate entrapped nanoparticles incorporate with injectable PDLLA-PEG-PDLLA triblock for preferable cartilage engineering application. Biomater 268:120605. doi:10.1016/j.biomaterials.2020.120605.
  • Tao S-C, Yuan T, Zhang Y-L, et al. (2017). Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics 7:180–95. doi:10.7150/thno.17133.
  • Tautzenberger A, Kovtun A, Ignatius A. (2012). Nanoparticles and their potential for application in bone. Int J Nanomed 7:4545–57. doi:10.2147/IJN.S34127.
  • Thibault RA, Mikos AG, Kasper FK. (2013). Scaffold/Extracellular matrix hybrid constructs for bone-tissue engineering. Adv Health Mater 2:13–24. doi:10.1002/adhm.201200209.
  • Thomas K, Sayre P. (2005). Research strategies for safety evaluation of nanomaterials, part I: evaluating the human health implications of exposure to nanoscale materials. Toxicol Sci 87:316–21. doi:10.1093/toxsci/kfi270.
  • Tsushima N, Yabuki M, Harada H, et al. (2000). Tissue distribution and pharmacological potential of SM-16896, a novel oestrogen-bisphosphonate hybrid compound. J Pharm Pharmacol 52:27–37. doi:10.1211/0022357001773652.
  • Urich J, Cucchiarini M, Rey-Rico A. (2020). Therapeutic delivery of rAAV sox9 via polymeric micelles counteracts the effects of osteoarthritis-associated inflammatory cytokines in human articular chondrocytes. Nanomater 10:1238. doi:10.3390/nano10061238.
  • Wang J, Tao S, Jin X, et al. (2020). Calcium supplement by tetracycline guided amorphous calcium carbonate potentiates osteoblast promotion for synergetic osteoporosis therapy. Theranostics 10:8591–605. doi:10.7150/thno.45142.
  • Wang Y, Jiang Y, Zhang Y, et al. (2019). Dual functional electrospun core-shell nanofibers for anti-infective guided bone regeneration membranes. Mater Sci Eng C Mater Biol Appl 98:134–9. doi:10.1016/j.msec.2018.12.115.
  • Wang Y, Malcolm DW, Benoit DSW. (2017). Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing. Biomater 139:127–38. doi:10.1016/j.biomaterials.2017.06.001.
  • Webster TJ, Ahn ES. (2007). Nanostructured biomaterials for tissue engineering bone. Tissue Eng II: Basics of Tissue Eng Tissue Appl 103:275–308.
  • Webster TJ. (2006). Nanomedicine: real commercial potential or just hype? Int J Nanomed 1:373–374. doi:10.2147/nano.2006.1.4.373.
  • Wei D, Jung J, Yang H, et al. (2016). Nanotechnology treatment options for osteoporosis and its corresponding consequences. Curr Osteoporos Rep 14:239–47. doi:10.1007/s11914-016-0324-1.
  • Wimpenny I, Markides H, El Haj AJ. (2012). Orthopaedic applications of nanoparticle-based stem cell therapies. Stem Cell Res Ther 3:13. doi:10.1186/scrt104.
  • Wu R, Gao G, Xu Y. (2020). Electrospun fibers immobilized with BMP-2 mediated by polydopamine combined with autogenous tendon to repair developmental dysplasia of the hip in a porcine model. Int J Nanomed 15:6563–77. doi:10.2147/IJN.S259028.
  • Wu S, Liu X, Yeung KWK, et al. (2014). Biomimetic porous scaffolds for bone tissue engineering. Materials Sci Eng: R: Reports 80:1–36. doi:10.1016/j.mser.2014.04.001.
  • Wu T, Sun J, Tan L, et al. (2020). Enhanced osteogenesis and therapy of osteoporosis using simvastatin loaded hybrid system. Bioact Mater 5:348–57. doi:10.1016/j.bioactmat.2020.03.004.
  • Xi D, Dong S, Meng X, et al. (2012). Gold nanoparticles as computerized tomography (CT) contrast agents. RSC Adv 2:12515–24. doi:10.1039/c2ra21263c.
  • Yan Y, Sun T, Zhang H, et al. (2019). Euryale ferox seed-inspired superlubricated nanoparticles for treatment of osteoarthritis. Adv Funct Mater 29:1807559. doi:10.1002/adfm.201807559.
  • Yang L, Webster TJ. (2011). Monitoring tissue healing through nanosensors. Nanotech Enabled In Situ Sens Monitoring Health, 1–17.
  • Yang F, Wu M, Chen H, et al. (2023). Combination therapy with BMSCs‑exosomes and porous tantalum for the repair of femur supracondylar defects. Mol Med Rep 28:41–59. doi:10.3892/mmr.2023.13017.
  • Yang L, Zhang L, Webster TJ. (2011). Carbon nanostructures for orthopedic medical applications. Nanomed (Lond) 6:1231–44. doi:10.2217/nnm.11.107.
  • Yang Y, et al. (2020). Trisulfide bond–mediated doxorubicin dimeric prodrug nanoassemblies with high drug loading, high self-assembly stability, and high tumor selectivity. Sci Adv 6:eabc1725. doi:10.1126/sciadv.abc1725.
  • Yao Q, Liu Y, Selvaratnam B, et al. (2018). Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering. J Control Release 279:69–78. doi:10.1016/j.jconrel.2018.04.011.
  • Young JK, Figueroa ER, Drezek RA. (2012). Tunable nanostructures as photothermal theranostic agents. Ann Biomed Eng 40:438–59. doi:10.1007/s10439-011-0472-5.
  • Yun Y, Bange A, Heineman WR, et al. (2007). A nanotube array immunosensor for direct electrochemical detection of antigen–antibody binding. Sens Actuators, B 123:177–82. doi:10.1016/j.snb.2006.08.014.
  • Yun Y-H, Eteshola E, Bhattacharya A, et al. (2009). Tiny medicine: nanomaterial-based biosensors. Sensors (Basel) 9:9275–99. doi:10.3390/s91109275.
  • Zerrillo L, et al. (2021). Novel fluorinated poly (lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG) nanoparticles for monitoring and imaging in osteoarthritis. Pharmaceutics 13:235. doi:10.3390/pharmaceutics13020235.
  • Zhang K, Yang J, Sun Y, et al. (2020). Thermo-sensitive dual-functional nanospheres with enhanced lubrication and drug delivery for the treatment of osteoarthritis. Chemistry 26:10564–74. doi:10.1002/chem.202001372.
  • Zhang L, Webster TJ. (2009). Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4:66–80. doi:10.1016/j.nantod.2008.10.014.
  • Zhang X, Chen J, Jiang Q, et al. (2020). Highly biosafe biomimetic stem cell membrane-disguised nanovehicles for cartilage regeneration. J Mater Chem B 8:8884–93. doi:10.1039/d0tb01686a.
  • Zhang Y, et al. (2018). Erratum: self-stabilized hyaluronate nanogel for intracellular codelivery of doxorubicin and cisplatin to osteosarcoma. Adv Sci Weinh 5:1800811.
  • Zhang Y, Wang F, Li M, et al. (2018). Self-stabilized hyaluronate nanogel for intracellular codelivery of doxorubicin and cisplatin to osteosarcoma. Adv Sci 5. doi:10.1002/advs.201800811.
  • Zhao R, et al. (2021). Bone grafts and substitutes in dentistry: a review of current trends and developments. Molecules 26:3007. doi:10.3390/molecules26103007.
  • Zhao W, Wang H, Wang H, et al. (2021). Light-responsive dual-functional biodegradable mesoporous silica nanoparticles with drug delivery and lubrication enhancement for the treatment of osteoarthritis. Nanoscale 13:6394–9. doi:10.1039/d0nr08887k.
  • Zhao Y, Chen H, Wang L, et al. (2020). Cationic solid lipid nanoparticles loaded by integrin β1 plasmid DNA attenuates IL-1β-induced apoptosis of chondrocyte. Aging (Albany NY) 12:22527–37.), doi:10.18632/aging.103656.
  • Zhou F, Mei J, Yang S, et al. (2020). Modified ZIF-8 nanoparticles attenuate osteoarthritis by reprogramming the metabolic pathway of synovial macrophages. ACS Appl Mater Interf 12:2009–22. doi:10.1021/acsami.9b16327.
  • Zhou X, He X, Shi K, et al. (2020). Injectable thermosensitive hydrogel containing erlotinib-loaded hollow mesoporous silica nanoparticles as a localized drug delivery system for NSCLC therapy. Adv Sci (Weinh) 7:2001442. doi:10.1002/advs.202001442.