1,262
Views
2
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Topically applied pH-responsive nanogels for alkyl radical-based therapy against psoriasiform hyperplasia

, , , , , & show all
Article: 2245169 | Received 07 Aug 2022, Accepted 01 Aug 2023, Published online: 10 Aug 2023

References

  • Aikawa E, Fujita R, Kikuchi Y, et al. (2015). Systemic high-mobility group box 1 administration suppresses skin inflammation by inducing an accumulation of PDGFRα+ mesenchymal cells from bone marrow. Sci Rep 5:1. doi: 10.1038/srep11008.
  • Albanesi C, Madonna S, Gisondi P, Girolomoni G. (2018). The interplay between keratinocytes and immune cells in the pathogenesis of psoriasis. Front Immunol 9:1549. doi: 10.3389/fimmu.2018.01549.
  • Algharib SA, Dawood A, Zhou K, et al. (2020). Designing, structural determination and biological effects of rifaximin loaded chitosan-carboxymethyl chitosan nanogel. Carbohydr Polym 248:116782. doi: 10.1016/j.carbpol.2020.116782.
  • Almutawa F, Alnomair N, Wang Y, et al. (2013). Systematic review of UV-based therapy for psoriasis. Am J Clin Dermatol 14:87–16. doi: 10.1007/s40257-013-0015-y.
  • Campione E, Mazzilli S, Di Prete M, et al. (2022). The role of glutathione-S transferase in psoriasis and associated comorbidities and the effect of dimethyl fumarate in this pathway. Front Med (Lausanne) 9:760852. doi: 10.3389/fmed.2022.760852.
  • Cannavo SP, Guarneri F, Giuffrida R, et al. (2017). Evaluation of cutaneous surface parameters in psoriatic patients. Skin Res Technol 23:41–7. doi: 10.1111/srt.12299.
  • Cao J, Xie M, Gao X, et al. (2021). Charge neutralization strategy to construct salt-tolerant and cell-permeable nanoprobes: application in ratiometric sensing and imaging of intracellular pH. Anal Chem 93:15159–66. doi: 10.1021/acs.analchem.1c03629.
  • Chellappan DK, Yee NJ, Kaur Ambar Jeet Singh BJ, et al. (2019). Formulation and characterization of glibendamide and quercetin-loaded chitosan nanogels targeting skin permeation. Ther Deliv 10:281–93. doi: 10.4155/tde-2019-0019.
  • Chiang SC, Meagher M, Kassouf N, et al. (2017). Mitochondrial protein-linked DNA breaks perturb mitochondrial gene transcription and trigger free radical-induced DNA damage. Sci Adv 3:e1602506. doi: 10.1126/sciadv.1602506.
  • Correia JH, Rodrigues JA, Pimenta S, et al. (2021). Photodynamic therapy review: principles, photosensitizers, applications, and future directions. Pharmaceutics 13:1332. doi: 10.3390/pharmaceutics13091332.
  • Cuggino JC, Blanco ERO, Gugliotta LM, et al. (2019). Crossing biological barriers with nanogels to improve drug delivery performance. J Control Release 307:221–46. doi: 10.1016/j.jconrel.2019.06.005.
  • Elkomy M, Alruwaili NK, Elmowafy M, et al. (2022). Surface-modified bilosomes nanogel bearing a natural plant alkaloid for safe management of rheumatoid arthritis inflammation. Pharmaceutics 14:563. doi: 10.3390/pharmaceutics14030563.
  • Ferreira PG, Ferreira VF, de Carvalho da Silva F, et al. (2022). Chitosans and nanochitosans: recent advances in skin protection, regeneration, and repair. Pharmaceutics 14:1307. doi: 10.3390/pharmaceutics14061307.
  • Griffiths CEM, Armstrong AW, Gudjonsson JE, Barker JNWN. (2021). Psoriasis. Lancet 397:1301–15. doi: 10.1016/S0140-6736(20)32549-6.
  • Gu H, Zhang Y, Zeng W, Xia Y. (2022). Participation of interferons in psoriatic inflammation. Cytokine Growth Factor Rev 64:12–20. doi: 10.1016/j.cytogfr.2021.12.002.
  • Han J, Burgess K. (2010). Fluorescent indicators for intracellular pH. Chem Rev 110:2709–28. doi: 10.1021/cr900249z.
  • Islam P, Water JJ, Bohr A, Rantanen J. (2017). Chitosan-based nano-embedded microparticles: impact of nanogel composition on physicochemical properties. Pharmaceutics 9:1. doi: 10.3390/pharmaceutics9010001.
  • Kemény L, Varga E, Novak Z. (2019). Advances in phototherapy for psoriasis and atopic dermatitis. Expert Rev Clin Immunol 15:1205–14. doi: 10.1080/1744666X.2020.1672537.
  • Knuckles MLF, Levi E, Soung J. (2018). Defining and treating moderate plaque psoriasis: a dermatologist survey. J Dermatol Treat 29:658–63. doi: 10.1080/09546634.2018.1443200.
  • Kousalová J, Etrych T. (2018). Polymeric nanogels as drug delivery systems. Physiol Res 67:S305–S317. doi: 10.33549/physiolres.933979.
  • Lee WR, Chou WL, Lin ZC, et al. (2022). Laser-assisted nanocarrier delivery to achieve cutaneous siRNA targeting for attenuating psoriasiform dermatitis. J Control Release 347:590–606. doi: 10.1016/j.jconrel.2022.05.032.
  • Lee KW, Wan Y, Li X, et al. (2021). Recent progress of alkyl radicals generation-based agents for biomedical applications. Adv Healthcare Mater 10:2100055. doi: 10.1002/adhm.202100055.
  • Li Y, Su J, Li F, et al. (2017). MiR-150 regulates human keratinocyte proliferation in hypoxic conditions through targeting HIF-1α and VEGFA: implications for psoriasis treatment. PLoS One 12:e0175459. doi: 10.1371/journal.pone.0175459.
  • Liang B, Qiao B, Yu K, et al. (2022). Mitochondrial glutathione depletion nanoshuttles for oxygen-irrelevant free radicals generation: a cascaded hierarchical targeting and theranostic strategy against hypoxic tumor. ACS Appl Mater Interf 14:13038–55. doi: 10.1021/acsami.1c24708.
  • Lin X, Qiu Y, Song L, et al. (2019). Ultrasound activation of liposomes for enhanced ultrasound imaging and synergistic gas and sonodynamic cancer therapy. Nanoscale Horiz 4:747–56. doi: 10.1039/C8NH00340H.
  • Lin YK, Yang SH, Chen CC, et al. (2015). Using imiquimod-induced psoriasis-like skin as a model to measure the skin penetration of anti-psoriatic drugs. PLoS One 10:e0137890. doi: 10.1371/journal.pone.0137890.
  • Magna M, Pisetsky DS. (2014). The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol Med 20:138–46. doi: 10.2119/molmed.2013.00164.
  • Nakabo S, Romo-Tena J, Kaplan MJ. (2022). Neutrophils as drivers of immune dysregulation in autoimmune diseases with skin manifestations. J Invest Dermatol 142:823–33. doi: 10.1016/j.jid.2021.04.014.
  • Németh T, Sperandio M, Mócsai A. (2020). Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 19:253–75. doi: 10.1038/s41573-019-0054-z.
  • Nirmal GR, Lin ZC, Tsai MJ, et al. (2021). Photothermal treatment by PLGA-gold nanorod-isatin nanocomplexes under near-infrared irradiation for alleviating psoriasiform hyperproliferation. J Control Release 333:487–99. doi: 10.1016/j.jconrel.2021.04.005.
  • Petit RG, Cano A, Ortiz A, et al. (2021). Psoriasis: from pathogenesis to pharmacological and nano-technological-based therapeutics. Int J Mol Sci 22:4983. doi: 10.3390/ijms22094983.
  • Pham K, Parikh K, Heinrich EC. (2021). Hypoxia and inflammation: insights from high-altitude physiology. Front Physiol 12:676782. doi: 10.3389/fphys.2021.676782.
  • Pinelli F, Ortolà ÓF, Makvandi P, et al. (2020). In vivo drug delivery applications of nanogels: a review. Nanomedicine (Lond) 15:2707–27. doi: 10.2217/nnm-2020-0274.
  • Plasencia I, Norlén L, Bagatolli LA. (2007). Direct visualization of lipid domains in human skin stratum corneum’s lipid membranes: effect of pH and temperature. Biophys J 93:3142–55. doi: 10.1529/biophysj.106.096164.
  • Pohla L, Ottas A, Kaldvee B, et al. (2020). Hyperproliferation is the main driver of metabolomic changes in psoriasis lesional skin. Sci Rep 10:3081. doi: 10.1038/s41598-020-59996-z.
  • Pukale SS, Sharma S, Dalela M, et al. (2020). Multi-component clobetasol-loaded monolithic lipid-polymer hybrid nanoparticles ameliorate imiquimod-induced psoriasis-like skin inflammation in Swiss albino mice. Acta Biomater 115:393–409. doi: 10.1016/j.actbio.2020.08.020.
  • Qi X, Qin J, Fan Y, et al. (2016). Carboxymethyl chitosan-modified polyamidoamine dendrimer enables progressive drug targeting of tumors via pH-sensitive charge inversion. J Biomed Nanotechnol 12:667–78. doi: 10.1166/jbn.2016.2206.
  • Rajput R, Narkhede J, Naik J. (2020). Nanogels as nanocarriers for drug delivery: a review. Admet DMPK 8:1–15. doi: 10.5599/admet.724.
  • Rapalli VK, Waghule T, Gorantla S, et al. (2020). Psoriasis: pathological mechanisms, current pharmacological therapies and emerging drug delivery systems. Drug Discov Today 25:2212–26. doi: 10.1016/j.drudis.2020.09.023.
  • Schütz CA, Juillerat-Jeanneret L, Käuper P, Wandrey C. (2011). Cell response to the exposure to chitosan-TPP//alginate nanogels. Biomacromolecules 12:4153–61. doi: 10.1021/bm201231x.
  • Scotti A, Schulte MF, Lopez CG, et al. (2022). How softness matters in soft nanogels and nanogel assemblies. Chem Rev 122:11675–700. doi: 10.1021/acs.chemrev.2c00035.
  • Smeets NMB, Hoare T. (2013). Designing responsive microgels for drug delivery applications. J Polym Sci Part A: Polym Chem 51:3027–43. doi: 10.1002/pola.26707.
  • Tao J, Yang J, Wang L, et al. (2008). Expression of GLUT-1 in psoriasis and the relationship between GLUT-1 upregulation induced by hypoxia and proliferation of keratinocyte growth. J Dermatol Sci 51:203–7. doi: 10.1016/j.jdermsci.2008.04.012.
  • Thirunavukkarasu GK, Nirmal GR, Lee H, et al. (2019). On-demand generation of heat and free radicals for dual cancer therapy using thermal initiator- and gold nanorod-embedded PLGA nanocomplexes. J Ind Eng Chem 69:405–13. doi: 10.1016/j.jiec.2018.09.051.
  • Tuguntaev RG, Hussain A, Fu C, et al. (2022). Bioimaging guided pharmaceutical evaluations of nanomedicines for clinical translations. J Nanobiotechnol 20:236. doi: 10.1186/s12951-022-01451-4.
  • van der Fits L, Mourits S, Voerman JS, et al. (2009). Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 182:5836–45. doi: 10.4049/jimmunol.0802999.
  • Wang XQ, Gao F, Zhang XZ. (2017a). Initiator-loaded gold nanocages as a light-induced free-radical generator for cancer therapy. Angew Chem Int Ed Engl 56:9029–33. doi: 10.1002/anie.201703159.
  • Wang H, Qian J, Ding F. (2017b). Recent advances in engineered chitosan-based nanogels for biomedical applications. J Mater Chem B 5:6986–7007. doi: 10.1039/c7tb01624g.
  • Wang XQ, Wang W, Peng M, Zhang XZ. (2021). Free radicals for cancer theranostics. Biomaterials 266:120474. doi: 10.1016/j.biomaterials.2020.120474.
  • Wu W, Yang Y, Liang Z, et al. (2021). Near infrared II laser controlled free radical releasing nanogenerator for synergistic nitric oxide and alkyl radical therapy of breast cancer. Nanoscale 13:11169–87. doi: 10.1039/d1nr01859k.
  • Yang W, Bai X, Luan X, et al. (2022). Delicate regulation of IL-1β-mediated inflammation by cyclophilin A. Cell Rep 38:110513. doi: 10.1016/j.celrep.2022.110513.
  • Yang G, Zhang X, Zhou S, et al. (2022). An AIPH-decorated semiconducting nanoagonist for NIR-II light-triggered photothermic/thermodynamic combinational therapy. Chem Commun (Camb) 58:7400–3. doi: 10.1039/d2cc01207c.
  • Yin Y, Hu B, Yuan X, et al. (2020). Nanogel: a versatile nano-delivery system for biomedical applications. Pharmaceutics 12:290. doi: 10.3390/pharmaceutics12030290.
  • Zhou X, Chen Y, Cui L, et al. (2022). Advances in the pathogenesis of psoriasis: from keratinocyte perspective. Cell Death Dis 13:81. doi: 10.1038/s41419-022-04523-3.