1,503
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Metformin HCl-loaded transethosomal gel; development, characterization, and antidiabetic potential evaluation in the diabetes-induced rat model

, ORCID Icon, , , , , , , , , , , & show all
Article: 2251720 | Received 23 Dec 2022, Accepted 20 Aug 2023, Published online: 30 Aug 2023

References

  • Aggarwal N, Goindi S, Mehta SD. (2012). Preparation and evaluation of dermal delivery system of griseofulvin containing vitamin E-TPGS as penetration enhancer. AAPS PharmSciTech 13:1–14. doi: 10.1208/s12249-011-9722-y.
  • Ahad A, Al-Saleh AA, Al-Mohizea AM, et al. (2018). Formulation and characterization of phospholipon 90 G and tween 80 based transfersomes for transdermal delivery of eprosartan mesylate. Pharm Dev Technol 23:787–93. doi: 10.1080/10837450.2017.1330345.
  • Ahad A, Aqil M, Kohli K, et al. (2016). The ameliorated longevity and pharmacokinetics of valsartan released from a gel system of ultradeformable vesicles. Artif Cells Nanomed Biotechnol 44:1457–63. doi: 10.3109/21691401.2015.1041638.
  • Ahmed TA, Alzahrani MM, Sirwi A, et al. (2021). the antifungal and ocular permeation of ketoconazole from ophthalmic formulations containing trans-ethosomes nanoparticles. Pharmaceutics 13:151. Study doi: 10.3390/pharmaceutics13020151.
  • Akram MW, Jamshaid H, Rehman FU, et al. (2022). Transfersomes: a revolutionary nanosystem for efficient transdermal drug delivery. AAPS PharmSciTech 23:1–18.
  • Albash R, Abdelbary AA, Refai H, et al. (2019). Use of transethosomes for enhancing the transdermal delivery of olmesartan medoxomil: in vitro, ex vivo, and in vivo evaluation. Int J Nanomed 14:1953–68. doi: 10.2147/IJN.S196771.
  • Amin S, Sarfenejad A, Ahmad J, et al. (2013). Nanovesicular transfersomes for enhanced systemic delivery of telmisartan. Adv Sci Eng Med 5:299–308. doi: 10.1166/asem.2013.1288.
  • Bachhav YG, Patravale VB. (2009). Microemulsion based vaginal gel of fluconazole: formulation, in vitro and in vivo evaluation. Int J Pharm 365:175–9. doi: 10.1016/j.ijpharm.2008.08.021.
  • Batool S, Zahid F, Ud-Din F, et al. (2021). Macrophage targeting with the novel carbopol-based miltefosine-loaded transfersomal gel for the treatment of cutaneous leishmaniasis: in vitro and in vivo analyses. Drug Dev Ind Pharm 47:440–53. doi: 10.1080/03639045.2021.1890768.
  • Berger J, Reist M, Mayer JM, et al. (2004). Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34. doi: 10.1016/s0939-6411(03)00161-9.
  • Bibi M, Ud Din F, Anwar Y, et al. (2022). Cilostazol-loaded solid lipid nanoparticles: Bioavailability and safety evaluation in an animal model. J Drug Delivery Sci Technol 74:103581. doi: 10.1016/j.jddst.2022.103581.
  • Black C, Donnelly P, McIntyre L, et al. (2007). Meglitinide analogues for type 2 diabetes mellitus. Cochrane Database Syst Rev 2007:CD004654. doi: 10.1002/14651858.CD004654.pub2.
  • Cesur S, Cam ME, Sayın FS, et al. (2022). Metformin-loaded polymer-based microbubbles/nanoparticles generated for the treatment of type 2 diabetes mellitus. Langmuir 38:5040–51. doi: 10.1021/acs.langmuir.1c00587.
  • Cetin M, Atila A, Sahin S, et al. (2013). Preparation and characterization of metformin hydrochloride loaded-Eudragit® RSPO and Eudragit® RSPO/PLGA nanoparticles. Pharm Dev Technol 18:570–6. doi: 10.3109/10837450.2011.604783.
  • Chaubey P, Mishra B. (2014). Mannose-conjugated chitosan nanoparticles loaded with rifampicin for the treatment of visceral leishmaniasis. Carbohydr Polym 101:1101–8. doi: 10.1016/j.carbpol.2013.10.044.
  • Chen Z, Li B, Liu T, et al. (2017). Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers. Eur J Pharm Sci 99:240–5. doi: 10.1016/j.ejps.2016.12.026.
  • Costanzo M, Esposito E, Sguizzato M, et al. (2021). Formulative study and intracellular fate evaluation of ethosomes and transethosomes for vitamin D3 delivery. Int J Mol Sci 22:5341. doi: 10.3390/ijms22105341.
  • Dar MJ, Din FU, Khan GM. (2018). Sodium stibogluconate loaded nano-deformable liposomes for topical treatment of leishmaniasis: macrophage as a target cell. Drug Deliv 25:1595–606. doi: 10.1080/10717544.2018.1494222.
  • Del Prato S, Pulizzi N. (2006). The place of sulfonylureas in the therapy for type 2 diabetes mellitus. Metabolism 55:S20–S27. doi: 10.1016/j.metabol.2006.02.003.
  • Demuth H-U, McIntosh CH, Pederson RA. (2005). Type 2 diabetes—therapy with dipeptidyl peptidase IV inhibitors. Biochim Biophys Acta 1751:33–44. doi: 10.1016/j.bbapap.2005.05.010.
  • El-Gizawy SA, Nouh A, Saber S, et al. (2020). Deferoxamine-loaded transfersomes accelerates healing of pressure ulcers in streptozotocin-induced diabetic rats. J Drug Delivery Sci Technol 58:101732. doi: 10.1016/j.jddst.2020.101732.
  • Gupta R, Badhe Y, Rai B, et al. (2020). Molecular mechanism of the skin permeation enhancing effect of ethanol: a molecular dynamics study. RSC Adv 10:12234–48. doi: 10.1039/d0ra01692f.
  • Hurler J, Engesland A, Poorahmary Kermany B, et al. (2012). Improved texture analysis for hydrogel characterization: gel cohesiveness, adhesiveness, and hardness. J Appl Polym Sci 125:180–8. doi: 10.1002/app.35414.
  • Jamshaid H, Malik M, Mukhtiar M, et al. (2022). A cutback in imiquimod cutaneous toxicity; comparative cutaneous toxicity analysis of imiquimod nanotransethosomal gel with 5% marketed cream on the BALB/c mice. Sci Rep 12:14244. doi: 10.1038/s41598-022-18671-1.
  • Kamboj VK, Verma PK. (2018). Preparation and characterization of metformin loaded stearic acid coupled F127 nanoparticles. Asian J Pharm Clin Res 11:212–7. doi: 10.22159/ajpcr.2018.v11i8.26444.
  • Kenechukwu FC, Nnamani DO, Momoh MA, et al. (2022). Enhanced circulation longevity and pharmacodynamics of metformin from surface-modified nanostructured lipid carriers based on solidified reverse micellar solutions. Heliyon 8:e09100. doi: 10.1016/j.heliyon.2022.e09100.
  • Khalid H, Batool S, Din F, et al. (2022). Macrophage targeting of nitazoxanide-loaded transethosomal gel in cutaneous leishmaniasis. R Soc Open Sci 9:220428. doi: 10.1098/rsos.220428.
  • Khan AU, Jamshaid H, Ud Din F, et al. (2022). Designing, optimization and characterization of Trifluralin transfersomal gel to passively target cutaneous leishmaniasis. J Pharm Sci 111:1798–811. doi: 10.1016/j.xphs.2022.01.010.
  • Kim JH, Song SH, Joo SH, et al. (2022). Formulation of a gastroretentive in situ oral gel containing metformin HCl Based on DoE. Pharmaceutics 14:1777. doi: 10.3390/pharmaceutics14091777.
  • Kumar L, Utreja P. (2020). Formulation and characterization of transethosomes for enhanced transdermal delivery of propranolol hydrochloride. MNS 12:38–47. doi: 10.2174/1876402911666190603093550.
  • Kumar L, Verma S, Singh K, et al. (2016). Ethanol based vesicular carriers in transdermal drug delivery: nanoethosomes and transethosomes in focus. NanoWorld J 2:41–51. doi: 10.17756/nwj.2016-030.
  • Kumar S, Bhanjana G, Verma RK, et al. (2017). Metformin-loaded alginate nanoparticles as an effective antidiabetic agent for controlled drug release. J Pharm Pharmacol 69:143–50. doi: 10.1111/jphp.12672.
  • Lari AS, Zahedi P, Ghourchian H, et al. (2021). Microfluidic-based synthesized carboxymethyl chitosan nanoparticles containing metformin for diabetes therapy: In vitro and in vivo assessments. Carbohydr Polym 261:117889. doi: 10.1016/j.carbpol.2021.117889.
  • Luft D, Schmülling R, Eggstein M. (1978). Lactic acidosis in biguanide-treated diabetics. Diabetologia 14:75–87. doi: 10.1007/BF01263444.
  • Luo C, He D, Yang H, et al. (2022). The effect of liraglutide on renal function in type 2 diabetes: a meta-analysis of randomized controlled studies. Afr Health Sci 22:267–74. doi: 10.4314/ahs.v22i3.28.
  • Majumder J, Taratula O, Minko T. (2019). Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv Drug Deliv Rev 144:57–77. doi: 10.1016/j.addr.2019.07.010.
  • Migdadi EM, Courtenay AJ, Tekko IA, et al. (2018). Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J Control Release 285:142–51. doi: 10.1016/j.jconrel.2018.07.009.
  • Mishra KK, Kaur CD, Verma S, et al. (2019). Transethosomes and nanoethosomes: Recent approach on transdermal drug delivery system. Nanomedicine 2:33–54.
  • Momoh M, Kenechukwu F, Attama A. (2013). Formulation and evaluation of novel solid lipid microparticles as a sustained release system for the delivery of metformin hydrochloride. Drug Deliv 20:102–11. doi: 10.3109/10717544.2013.779329.
  • Moolakkadath T, Aqil M, Ahad A, et al. (2018). Development of transethosomes formulation for dermal fisetin delivery: Box–Behnken design, optimization, in vitro skin penetration, vesicles–skin interaction and dermatokinetic studies. Artif Cells Nanomed Biotechnol 46:755–65. doi: 10.1080/21691401.2018.1469025.
  • Nahar M, Jain NK. (2009). Preparation, characterization and evaluation of targeting potential of amphotericin B-loaded engineered PLGA nanoparticles. Pharm Res 26:2588–98. doi: 10.1007/s11095-009-9973-4.
  • Nayak D, Tawale RM, Aranjani JM, et al. (2020). Formulation, optimization and evaluation of novel ultra-deformable vesicular drug delivery system for an anti-fungal drug. AAPS PharmSciTech 21:140. doi: 10.1208/s12249-020-01681-5.
  • Opatha SAT, Titapiwatanakun V, Chutoprapat R. (2020). Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics 12:855. doi: 10.3390/pharmaceutics12090855.
  • Patil S, Kadam A, Bandgar S, et al. (2015). Formulation and evaluation of an in situ gel for ocular drug delivery of anticonjunctival drug. Cellul Chem Technol 49:35–40.
  • Patiño-Herrera R, Louvier-Hernández JF, Escamilla-Silva EM, et al. (2019). Prolonged release of metformin by SiO2 nanoparticles pellets for type II diabetes control. Eur J Pharm Sci 131:1–8. doi: 10.1016/j.ejps.2019.02.003.
  • Rabia S, Khaleeq N, Batool S, et al. (2020). Rifampicin-loaded nanotransferosomal gel for treatment of cutaneous leishmaniasis: passive targeting via topical route. Nanomedicine 15:183–203. doi: 10.2217/nnm-2019-0320.
  • Rizvi SZH, Shah FA, Khan N, et al. (2019). Simvastatin-loaded solid lipid nanoparticles for enhanced anti-hyperlipidemic activity in hyperlipidemia animal model. Int J Pharm 560:136–43. doi: 10.1016/j.ijpharm.2019.02.002.
  • Rostamkalaei SS, Akbari J, Saeedi M, et al. (2019). Topical gel of Metformin solid lipid nanoparticles: a hopeful promise as a dermal delivery system. Colloids Surf B Biointerfaces 175:150–7. doi: 10.1016/j.colsurfb.2018.11.072.
  • Saini N, Sodhi RK, Bajaj L, et al. (2016). Intravaginal administration of metformin hydrochloride loaded cationic niosomes amalgamated with thermosensitive gel for the treatment of polycystic ovary syndrome: in vitro and in vivo studies. Colloids Surf B Biointerfaces 144:161–9. doi: 10.1016/j.colsurfb.2016.04.016.
  • Salim MW, Shabbir K, Yousaf AM, et al. (2020). Preparation, in-vitro and in-vivo evaluation of rifampicin and vancomycin co-loaded transfersomal gel for the treatment of cutaneous leishmaniasis. J Drug Delivery Sci Technol 60:101996. doi: 10.1016/j.jddst.2020.101996.
  • San Tang K. (2019). The current and future perspectives of zinc oxide nanoparticles in the treatment of diabetes mellitus. Life Sci 239:117011. doi: 10.1016/j.lfs.2019.117011.
  • Sankhyan A, Pawar PK. (2013). Metformin loaded non-ionic surfactant vesicles: optimization of formulation, effect of process variables and characterization. Daru 21:7. doi: 10.1186/2008-2231-21-7.
  • Sharma U, Sahu R, Roy A, et al. (2010). In vivo antidiabetic antioxidant potential of Stephania hernandifolia in streptozotocin-induced-diabetic rats. J Young Pharm 2:255–60. doi: 10.4103/0975-1483.66803.
  • Soccio RE, Chen ER, Lazar MA. (2014). Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab 20:573–91. doi: 10.1016/j.cmet.2014.08.005.
  • Song CK, Balakrishnan P, Shim C-K, et al. (2012). A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces 92:299–304. doi: 10.1016/j.colsurfb.2011.12.004.
  • Ternullo S, Schulte Werning LV, Holsæter AM, et al. (2019). Curcumin-in-deformable liposomes-in-chitosan-hydrogel as a novel wound dressing. Pharmaceutics 12:8. doi: 10.3390/pharmaceutics12010008.
  • Torabian F, Akhavan Rezayat A, Ghasemi Nour M, et al. (2022). Administration of silver nanoparticles in diabetes mellitus: a systematic review and meta-analysis on animal studies. Biol Trace Elem Res 200:1699–709. doi: 10.1007/s12011-021-02776-1.
  • Udokang N, Udobang J, Ekpenyong C, et al. (2012). Oral administration of aqueous leaf extract of Ocimum gratissimum ameliorates polyphagia, polydipsia and weight loss in streptozotocin-induced diabetic rats. Am J Med Med Sci 2:45–9.
  • Usman F, Javed I, Hussain SZ, et al. (2016). Hydrophilic nanoparticles packed in oral tablets can improve the plasma profile of short half-life hydrophobic drugs. RSC Adv 6:94896–904. doi: 10.1039/C6RA11799F.
  • Van De Laar FA, Lucassen PL, Akkermans RP, et al. (2005). α-Glucosidase inhibitors for patients with type 2 diabetes: results from a cochrane systematic review and meta-analysis. Diabetes Care 28:154–63. doi: 10.2337/diacare.28.1.154.
  • Van Staden D, Du Plessis J, Viljoen J. (2020). Development of a self-emulsifying drug delivery system for optimized topical delivery of clofazimine. Pharmaceutics 12:523. doi: 10.3390/pharmaceutics12060523.
  • Verma ML, Kumar S, Das A, et al. (2020). Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications. Environ Chem Lett 18:315–23. doi: 10.1007/s10311-019-00942-5.
  • Yuan M, Niu J, Xiao Q, et al. (2022). Hyaluronan-modified transfersomes based hydrogel for enhanced transdermal delivery of indomethacin. Drug Deliv 29:1232–42. doi: 10.1080/10717544.2022.2053761.
  • Zhu W, Yu A, Wang W, et al. (2008). Formulation design of microemulsion for dermal delivery of penciclovir. Int J Pharm 360:184–90. doi: 10.1016/j.ijpharm.2008.04.008.