1,204
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Kartogenin delivery systems for biomedical therapeutics and regenerative medicine

ORCID Icon &
Article: 2254519 | Received 19 Apr 2023, Accepted 21 Aug 2023, Published online: 04 Sep 2023

References

  • Alge DL, Azagarsamy MA, Donohue DF, Anseth KS. (2013). Synthetically tractable click hydrogels for three-dimensional cell culture formed using tetrazine–norbornene chemistry. Biomacromolecules 14:1–15. doi:10.1021/bm4000508.
  • Almeida B, Wang Y, Shukla A. (2020). Effects of nanoparticle properties on kartogenin delivery and interactions with mesenchymal stem cells. Ann Biomed Eng 48:2090–2102. doi:10.1007/s10439-019-02430-x.
  • Armiento AR, Stoddart MJ, Alini M, Eglin D. (2018). Biomaterials for articular cartilage tissue engineering: learning from biology. Acta Biomater 65:1–20. doi:10.1016/j.actbio.2017.11.021.
  • Asgari N, Bagheri F, Eslaminejad MB, et al. (2020). Dual functional construct containing kartogenin releasing microtissues and curcumin for cartilage regeneration. Stem Cell Res Ther 11:289. doi:10.1186/s13287-020-01797-2.
  • Berthiaume F, Maguire TJ, Yarmush ML. (2011). Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng 2:403–30. doi:10.1146/annurev-chembioeng-061010-114257.
  • Bittner SM, Smith BT, Diaz-Gomez L, et al. (2019). Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomater 90:37–48. doi:10.1016/j.actbio.2019.03.041.
  • Boyer C, Figueiredo L, Pace R, et al. (2018). Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Acta Biomater 65:112–122. doi:10.1016/j.actbio.2017.11.027.
  • Cai G, Liu W, He Y, et al. (2019). Recent advances in kartogenin for cartilage regeneration. J Drug Target 27:28–32.
  • Cai J, Zhang L, Chen J, Chen S. (2019). Kartogenin and its application in regenerative medicine. Curr Med Sci 39:16–20. doi:10.1007/s11596-019-1994-6.
  • Chen G, Qiu H, Prasad PN, Chen X. (2014). Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev 114:5161–214. doi:10.1021/cr400425h.
  • Chen P, Wang S, Huang Z, et al. (2021). Multi-functionalized nanofibers with reactive oxygen species scavenging capability and fibrocartilage inductivity for tendon-bone integration. J Mater Sci Technol 70:91–104. doi:10.1016/j.jmst.2020.09.006.
  • Chen Y, Zhou L, Ding Y, et al. (2022). Kartogenin regulates hair growth and hair cycling transition. Int J Med Sci 19:537–45. doi:10.7150/ijms.68434.
  • Cheng L, Hu Q, Cheng L, et al. (2015). Construction and evaluation of PAMAM–DOX conjugates with superior tumor recognition and intracellular acid-triggered drug release properties. Colloids Surf B Biointerfaces 136:37–45. doi:10.1016/j.colsurfb.2015.04.003.
  • Dai W, Liu Q, Li S, et al. (2023). Functional injectable hydrogel with spatiotemporal sequential release for recruitment of endogenous stem cells andin situ cartilage regeneration. J Mater Chem B 11:4050–4064. doi:10.1039/d3tb00105a.
  • Decker RS, Koyama E, Enomoto-Iwamoto M, et al. (2014). Mouse limb skeletal growth and synovial joint development are coordinately enhanced by Kartogenin. Dev Biol 395:255–67. doi:10.1016/j.ydbio.2014.09.011.
  • Dehghan Baniani D, Mehrjou B, Chu PK, Wu H. (2021). A biomimetic nano‐engineered platform for functional tissue engineering of cartilage superficial zone. Adv Healthc Mater 10:e2001018. doi:10.1002/adhm.202001018.
  • Dehghan-Baniani D, Chen Y, Wang D, et al. (2020). Injectable in situ forming kartogenin-loaded chitosan hydrogel with tunable rheological properties for cartilage tissue engineering. Colloids Surf B Biointerfaces 192:111059. doi:10.1016/j.colsurfb.2020.111059.
  • Ding Y, Li W, Zhang F, et al. (2019). Electrospun fibrous architectures for drug delivery, tissue engineering and cancer therapy. Adv Funct Mater 29:1802852. doi:10.1002/adfm.201802852.
  • Drury JL, Mooney DJ. (2003). Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–51. doi:10.1016/s0142-9612(03)00340-5.
  • Edgar JR. (2016). Q&A: what are exosomes, exactly? BMC Biol 14:46. doi:10.1186/s12915-016-0268-z.
  • Elder S, Roberson JG, Warren J, et al. (2022). Evaluation of electrospun PCL-PLGA for sustained delivery of kartogenin. Molecules 27:3739. doi:10.3390/molecules27123739.
  • Fan W, Li J, Yuan L, et al. (2018). Intra-articular injection of kartogenin-conjugated polyurethane nanoparticles attenuates the progression of osteoarthritis. Drug Deliv 25:1004–1012. doi:10.1080/10717544.2018.1461279.
  • Fan W, Yuan L, Li J, et al. (2020). Injectable double-crosslinked hydrogels with kartogenin-conjugated polyurethane nano-particles and transforming growth factor β3 for in-situ cartilage regeneration. Mater Sci Eng C Mater Biol Appl 110:110705. doi:10.1016/j.msec.2020.110705.
  • Feng Q, Wei K, Lin S, et al. (2017). Corrigendum to “Mechanically resilient, injectable, and bioadhesive supramolecular gelatin hydrogels crosslinked by weak host-guest interactions assist cell infiltration and in situ tissue regeneration” [Biomaterials 101C (2016) 217–228]. Biomaterials 112:346–347. doi:10.1016/j.biomaterials.2016.09.012.
  • Gaharwar AK, Peppas NA, Khademhosseini A. (2014). Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441–53. doi:10.1002/bit.25160.
  • Goldberg M, Langer R, Jia X. (2007). Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 18:241–68. doi:10.1163/156856207779996931.
  • Ha C, Park Y, Chung J, Park Y. (2015). Cartilage repair using composites of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel in a minipig model. Stem Cells Transl Med 4:1044–51. doi:10.5966/sctm.2014-0264.
  • Haase M, Schäfer H. (2011). Upconverting nanoparticles. Angew Chem Int Ed Engl 50:5808–29. doi:10.1002/anie.201005159.
  • Hachani R, Lowdell M, Birchall M, et al. (2016). Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale 8:3278–87. doi:10.1039/c5nr03867g.
  • Han F, Zhang P, Wen X, et al. (2019). Bioactive LbL-assembled multilayer nanofilms upregulate tenogenesis and angiogenesis enabling robust healing of degenerative rotator cuff tendons in vivo. Biomater Sci 7:4388–4398. doi:10.1039/c9bm00413k.
  • Hoffman AS. (2012). Hydrogels for biomedical applications. Adv Drug Deliver Rev 64:18–23. doi:10.1016/j.addr.2012.09.010.
  • Hu Q, Ding B, Yan X, et al. (2017). Polyethylene glycol modified PAMAM dendrimer delivery of kartogenin to induce chondrogenic differentiation of mesenchymal stem cells. Nanomedicine 13:2189–98. doi:10.1016/j.nano.2017.05.011.
  • Hu W, Hou X, Xia Z, et al. (2016). Genome-wide survey and expression analysis of the calcium-dependent protein kinase gene family in cassava. Mol Genet Genomics 291:241–53. doi:10.1007/s00438-015-1103-x.
  • Huang C, Zhang X, Luo H, et al. (2020). Effect of kartogenin-loaded gelatin methacryloyl hydrogel scaffold with bone marrow-stimulation for enthesis healing in rotator cuff repair. J Shoulder Elb Surg 30:544–553. doi:10.1016/j.jse.2020.06.013.
  • Huang H, Xu H, Zhao J. (2017). A novel approach for meniscal regeneration using kartogenin-treated autologous tendon graft. Am J Sports Med 45:3289–3297. doi:10.1177/0363546517721192.
  • Huang Y, Jiang T, Chen J, et al. (2018). Effects of kartogenin on the attenuated nucleus pulposus cell degeneration of intervertebral discs induced by interleukin-1beta and tumor necrosis factor-alpha. Int J Mol Med 41:749–56.
  • Hunter DJ. (2011). Pharmacologic therapy for osteoarthritis—the era of disease modification. Nat Rev Rheumatol 7:13–22. doi:10.1038/nrrheum.2010.178.
  • Im G. (2018). Application of kartogenin for musculoskeletal regeneration. J Biomed Mater Res A 106:1141–8. doi:10.1002/jbm.a.36300.
  • Ito T, Yeo Y, Highley C, et al. (2007). Dextran-based in situ cross-linked injectable hydrogels to prevent peritoneal adhesions. Biomaterials 28:3418–26. doi:10.1016/j.biomaterials.2007.04.017.
  • Ji X, Shao H, Li X, et al. (2022). Injectable immunomodulation-based porous chitosan microspheres/HPCH hydrogel composites as a controlled drug delivery system for osteochondral regeneration. Biomaterials 285:121530. doi:10.1016/j.biomaterials.2022.121530.
  • Jiang J, Xie J, Ma B, et al. (2014). Mussel-inspired protein-mediated surface functionalization of electrospun nanofibers for pH-responsive drug delivery. Acta Biomater 10:1324–32. doi:10.1016/j.actbio.2013.11.012.
  • Jiang W, Xiang X, Song M, et al. (2022). An all-silk-derived bilayer hydrogel for osteochondral tissue engineering. Mater Today Bio 17:100485. doi:10.1016/j.mtbio.2022.100485.
  • Jin K, Luo Z, Zhang B, Pang Z. (2018). Biomimetic nanoparticles for inflammation targeting. Acta Pharm Sin B 8:23–33. doi:10.1016/j.apsb.2017.12.002.
  • Jing H, Zhang X, Gao M, et al. (2019). Kartogenin preconditioning commits mesenchymal stem cells to a precartilaginous stage with enhanced chondrogenic potential by modulating JNK and β-catenin − related pathways. Faseb J 33:5641–53. doi:10.1096/fj.201802137RRR.
  • Jing H, Zhang X, Luo K, et al. (2020). miR-381-abundant small extracellular vesicles derived from kartogenin-preconditioned mesenchymal stem cells promote chondrogenesis of MSCs by targeting TAOK1. Biomaterials 231:119682. doi:10.1016/j.biomaterials.2019.119682.
  • Johnson K, Zhu S, Tremblay MS, et al. (2012). A stem cell-based approach to cartilage repair. Science 336:717–21. doi:10.1126/science.1215157.
  • Kang M, Kim J, Im G. (2016). Thermoresponsive nanospheres with independent dual drug release profiles for the treatment of osteoarthritis. Acta Biomater 39:65–78. doi:10.1016/j.actbio.2016.05.005.
  • Kang ML, Ko J, Kim JE, Im G. (2014). Intra-articular delivery of kartogenin-conjugated chitosan nano/microparticles for cartilage regeneration. Biomaterials 35:9984–94. doi:10.1016/j.biomaterials.2014.08.042.
  • Kim W, Kim GH. (2022). Highly bioactive cell-laden hydrogel constructs bioprinted using an emulsion bioink for tissue engineering applications. Biofabrication 14:045018. doi:10.1088/1758-5090/ac8fb8.
  • Ku SH, Park CB. (2010). Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials 31:9431–7. doi:10.1016/j.biomaterials.2010.08.071.
  • Kwon JY, Lee SH, Na HS, et al. (2018). Kartogenin inhibits pain behavior, chondrocyte inflammation, and attenuates osteoarthritis progression in mice through induction of IL-10. Sci Rep 8:13832. doi:10.1038/s41598-018-32206-7.
  • Landau S, Szklanny AA, Yeo GC, et al. (2017). Tropoelastin coated PLLA-PLGA scaffolds promote vascular network formation. Biomaterials 122:72–82. doi:10.1016/j.biomaterials.2017.01.015.
  • Li H, Liao Z, Yang Z, et al. (2021). 3D printed poly(ε-caprolactone)/meniscus extracellular matrix composite scaffold functionalized with kartogenin-releasing PLGA microspheres for meniscus tissue engineering. Front Bioeng Biotech 9:662381. doi:10.3389/fbioe.2021.662381.
  • Li J, Lee WY, Wu T, et al. (2016). Near-infrared light-triggered release of small molecules for controlled differentiation and long-term tracking of stem cells in vivo using upconversion nanoparticles. Biomaterials 110:1–10. doi:10.1016/j.biomaterials.2016.09.011.
  • Li J, Mooney DJ. (2016). Designing hydrogels for controlled drug delivery. Nat Rev Mater 1:16071. doi:10.1038/natrevmats.2016.71.
  • Li L, Li H, Qian Y, et al. (2011). Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release. Int J Biol Macromol 49:223–32. doi:10.1016/j.ijbiomac.2011.04.018.
  • Li L, Qian Y, Jiang C, et al. (2012). The use of hyaluronan to regulate protein adsorption and cell infiltration in nanofibrous scaffolds. Biomaterials 33:3428–45. doi:10.1016/j.biomaterials.2012.01.038.
  • Li S, Xu Y, Yu J, Becker ML. (2017). Enhanced osteogenic activity of poly(ester urea) scaffolds using facile post-3D printing peptide functionalization strategies. Biomaterials 141:176–187. doi:10.1016/j.biomaterials.2017.06.038.
  • Li X, Ding J, Zhang Z, et al. (2016). Kartogenin-incorporated thermogel supports stem cells for significant cartilage regeneration. ACS Appl Mater Interfaces 8:5148–59. doi:10.1021/acsami.5b12212.
  • Liang J, Zhang K, Li J, et al. (2022). Injectable protocatechuic acid based composite hydrogel with hemostatic and antioxidant properties for skin regeneration. Mater Design 222:111109. doi:10.1016/j.matdes.2022.111109.
  • Lin J, Chen L, Yang J, et al. (2022). Injectable double positively charged hydrogel microspheres for targeting‐penetration‐phagocytosis. Small 18:e2202156. doi:10.1002/smll.202202156.
  • Liu C, Ma X, Li T, Zhang Q. (2015). Kartogenin, transforming growth factor-?1 and bone morphogenetic protein-7 coordinately enhance lubricin accumulation in bone-derived mesenchymal stem cells. Cell Biol Int 39:1026–35. doi:10.1002/cbin.10476.
  • Liu T, Li X, Wang T, et al. (2020). Kartogenin mediates cartilage regeneration by stimulating the IL-6/Stat3-dependent proliferation of cartilage stem/progenitor cells. Biochem Bioph Res Coummun 532:385–92.
  • Liu X, Chen Y, Mao AS, et al. (2020). Molecular recognition-directed site-specific release of stem cell differentiation inducers for enhanced joint repair. Biomaterials 232:119644. doi:10.1016/j.biomaterials.2019.119644.
  • Liu X, Wei Y, Xuan C, et al. (2020). A biomimetic biphasic osteochondral scaffold with layer‐specific release of stem cell differentiation inducers for the reconstruction of osteochondral defects. Adv Healthc Mater 9:e2000076. doi:10.1002/adhm.202000076.
  • Lo KWH, Jiang T, Gagnon KA, et al. (2014). Small-molecule based musculoskeletal regenerative engineering. Trends Biotechnol 32:74–81. doi:10.1016/j.tibtech.2013.12.002.
  • Lu B, Atala A. (2014). Small molecules and small molecule drugs in regenerative medicine. Drug Discov Today 19:801–8. doi:10.1016/j.drudis.2013.11.011.
  • Mahapatra C, Kim J, Lee J, et al. (2019). Differential chondro- and osteo-stimulation in three-dimensional porous scaffolds with different topological surfaces provides a design strategy for biphasic osteochondral engineering. J Tissue Eng 10:2041731419826433. doi:10.1177/2041731419826433.
  • Makris EA, Gomoll AH, Malizos KN, et al. (2015). Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol 11:21–34. doi:10.1038/nrrheum.2014.157.
  • Marini JC, Forlino A. (2012). Replenishing cartilage from endogenous stem cells. N Engl J Med 366:2522–4. doi:10.1056/NEJMcibr1204283.
  • Martinez JO, Evangelopoulos M, Bhavane R, et al. (2015). Multistage nanovectors enhance the delivery of free and encapsulated drugs. Curr Drug Targets 16:1582–90. doi:10.2174/1389450115666141015113914.
  • Massaro M, Buscemi G, Arista L, et al. (2019). Multifunctional carrier based on halloysite/laponite hybrid hydrogel for kartogenin delivery. ACS Med Chem Lett 10:419–24. doi:10.1021/acsmedchemlett.8b00465.
  • Massaro M, Cavallaro G, Colletti CG, et al. (2018). Chemical modification of halloysite nanotubes for controlled loading and release. J Mater Chem B 6:3415–3433. doi:10.1039/c8tb00543e.
  • Mathieu M, Martin-Jaular L, Lavieu G, Théry C. (2019). Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21:9–17. doi:10.1038/s41556-018-0250-9.
  • Maudens P, Seemayer CA, Thauvin C, et al. (2018). Nanocrystal-polymer particles: extended delivery carriers for osteoarthritis treatment. Small 14:1703108. doi:10.1002/smll.201703108.
  • Min Q, Tian D, Zhang Y, et al. (2022). Strong and elastic chitosan/silk fibroin hydrogels incorporated with growth-factor-loaded microspheres for cartilage tissue engineering. Biomimetics-Basel 7:41. doi:10.3390/biomimetics7020041.
  • Miyatake K, Iwasa K, McNary SM, et al. (2016). Modulation of superficial zone protein/lubricin/PRG4 by kartogenin and transforming growth factor-?1 in surface zone chondrocytes in bovine articular cartilage. Cartilage 7:388–97. doi:10.1177/1947603516630789.
  • Music E, Klein TJ, Lott WB, Doran MR. (2020). Transforming growth factor-beta stimulates human bone marrow-derived mesenchymal stem/stromal cell chondrogenesis more so than kartogenin. Sci Rep 10:8340. doi:10.1038/s41598-020-65283-8.
  • Offeddu GS, Ashworth JC, Cameron RE, Oyen ML. (2016). Structural determinants of hydration, mechanics and fluid flow in freeze-dried collagen scaffolds. Acta Biomater 41:193–203. doi:10.1016/j.actbio.2016.05.024.
  • Oh SH, Park IK, Kim JM, Lee JH. (2007). In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 28:1664–71. doi:10.1016/j.biomaterials.2006.11.024.
  • Parodi A, Molinaro R, Sushnitha M, et al. (2017). Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials 147:155–168. doi:10.1016/j.biomaterials.2017.09.020.
  • Prince E, Kumacheva E. (2019). Design and applications of man-made biomimetic fibrillar hydrogels. Nat Rev Mater 4:99–115. doi:10.1038/s41578-018-0077-9.
  • Qian Y, Li L, Song Y, et al. (2018). Surface modification of nanofibrous matrices via layer-by-layer functionalized silk assembly for mitigating the foreign body reaction. Biomaterials 164:22–37. doi:10.1016/j.biomaterials.2018.02.038.
  • Ramaswamy S, Greco JB, Uluer MC, et al. (2009). Magnetic resonance imaging of chondrocytes labeled with superparamagnetic iron oxide nanoparticles in tissue-engineered cartilage. Tissue Eng Part A 15:3899–910. doi:10.1089/ten.tea.2008.0677.
  • Ravindran S, Gao Q, Kotecha M, et al. (2012). Biomimetic extracellular matrix-incorporated scaffold induces osteogenic gene expression in human marrow stromal cells. Tissue Eng Part A 18:295–309. doi:10.1089/ten.TEA.2011.0136.
  • Samavedi S, Olsen HC, Guelcher SA, et al. (2011). Fabrication of a model continuously graded co-electrospun mesh for regeneration of the ligament-bone interface. Acta Biomater 7:4131–8. doi:10.1016/j.actbio.2011.07.008.
  • Seo S, Mahapatra C, Singh RK, et al. (2014). Strategies for osteochondral repair: focus on scaffolds. J Tissue Eng 5:2041731414541850. doi:10.1177/2041731414541850.
  • Shi D, Xu X, Ye Y, et al. (2016). Photo-cross-linked scaffold with kartogenin-encapsulated nanoparticles for cartilage regeneration. Acs Nano 10:1292–9. doi:10.1021/acsnano.5b06663.
  • Sill TJ, von Recum HA. (2008). Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006. doi:10.1016/j.biomaterials.2008.01.011.
  • Silva JC, Udangawa RN, Chen J, et al. (2020). Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl 107:110291. doi:10.1016/j.msec.2019.110291.
  • Somiya M, Kuroda S. (2015). Development of a virus-mimicking nanocarrier for drug delivery systems: the bio-nanocapsule. Adv Drug Deliv Rev 95:77–89. doi:10.1016/j.addr.2015.10.003.
  • Song W, Zhang Y, Yu D, et al. (2021). Efficient synthesis of folate-conjugated hollow polymeric capsules for accurate drug delivery to cancer cells. Biomacromolecules 22:732–742. doi:10.1021/acs.biomac.0c01520.
  • Spakova T, Plsikova J, Harvanova D, et al. (2018). Influence of kartogenin on chondrogenic differentiation of human bone marrow-derived MSCs in 2D culture and in co-cultivation with OA osteochondral explant. Molecules 23:181. doi:10.3390/molecules23010181.
  • Stejskalová A, Almquist BD. (2017). Using biomaterials to rewire the process of wound repair. Biomater Sci 5:1421–34. doi:10.1039/c7bm00295e.
  • Su W, Huang C, Liu H. (2022). Evaluation and preparation of a designed kartogenin drug delivery system (DDS) of hydrazone-linkage-based pH responsive mPEG-Hz-b-PCL nanomicelles for treatment of osteoarthritis. Front Bioeng Biotech 10:816664. doi:10.3389/fbioe.2022.816664.
  • Sun J, Kurtzberg J. (2015). Chapter 13. Emerging uses of cord blood in regenerative medicine—neurological applications. In: Stavropoulos-Giokas C, Charron D, Navarrete C, ed. Cord blood stem cells and regenerative medicine, London: Academic Press, 167–77.
  • Sun L, Wang M, Chen S, et al. (2019). Molecularly engineered metal-based bioactive soft materials – neuroactive magnesium ion/polymer hybrids. Acta Biomater 85:310–9. doi:10.1016/j.actbio.2018.12.040.
  • Sun X, Wang J, Wang Y, Zhang Q. (2018). Collagen-based porous scaffolds containing PLGA microspheres for controlled kartogenin release in cartilage tissue engineering. Artif Cells Nanomed Biotechnol 46:1957–1966. doi:10.1080/21691401.2017.1397000.
  • Tan H, Marra KG. (2010). Injectable, biodegradable hydrogels for tissue engineering applications. Materials 3:1746–1767. doi:10.3390/ma3031746.
  • Tan H, Ramirez CM, Miljkovic N, et al. (2009). Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials 30:6844–53. doi:10.1016/j.biomaterials.2009.08.058.
  • Teng B, Zhang S, Pan J, et al. (2021). A chondrogenesis induction system based on a functionalized hyaluronic acid hydrogel sequentially promoting hMSC proliferation, condensation, differentiation, and matrix deposition. Acta Biomater 122:145–159. doi:10.1016/j.actbio.2020.12.054.
  • Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. (2016). Extracellular matrix structure. Adv Drug Deliv Rev 97:4–27. doi:10.1016/j.addr.2015.11.001.
  • Théry C, Witwer KW, Aikawa E, et al. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7:1535750. doi:10.1080/20013078.2018.1535750.
  • Wang C, Liu Q, Ma X, Dai G. (2019). Levels of matrix metalloproteinase-2 in committed differentiation of bone marrow mesenchymal stem cells induced by kartogenin. J Int Med Res 47:3261–70. doi:10.1177/0300060519853399.
  • Wang F, Deng R, Wang J, et al. (2011). Tuning upconversion through energy migration in core–shell nanoparticles. Nat Mater 10:968–73. doi:10.1038/nmat3149.
  • Wang J, Langhe D, Ponting M, et al. (2014). Manufacturing of polymer continuous nanofibers using a novel co-extrusion and multiplication technique. Polymer 55:673–685. doi:10.1016/j.polymer.2013.12.025.
  • Wang J, Wang Y, Sun X, et al. (2019). Biomimetic cartilage scaffold with orientated porous structure of two factors for cartilage repair of knee osteoarthritis. Artif Cells Nanomed Biotechnol 47:1710–21. doi:10.1080/21691401.2019.1607866.
  • Wang J, Zhou J, Zhang N, et al. (2014). A heterocyclic molecule kartogenin induces collagen synthesis of human dermal fibroblasts by activating the smad4/smad5 pathway. Biochem Biophys Res Commun 450:568–74. doi:10.1016/j.bbrc.2014.06.016.
  • Wang Y, Feng L, Wang S. (2019). Conjugated polymer nanoparticles for imaging, cell activity regulation, and therapy. Adv Funct Mater 29:1806818. doi:10.1002/adfm.201806818.
  • Wei W, Liu W, Kang H, et al. (2023). A one‐stone‐two‐birds strategy for osteochondral regeneration based on a 3d printable biomimetic scaffold with kartogenin biochemical stimuli gradient. Adv Healthc Mater 12:e2300108.
  • Westin CB, Trinca RB, Zuliani C, et al. (2017). Differentiation of dental pulp stem cells into chondrocytes upon culture on porous chitosan-xanthan scaffolds in the presence of kartogenin. Mater Sci Eng C Mater Biol Appl 80:594–602. doi:10.1016/j.msec.2017.07.005.
  • Wu J, Cao L, Liu Y, et al. (2019). Functionalization of silk fibroin electrospun scaffolds via BMSC affinity peptide grafting through oxidative self-polymerization of dopamine for bone regeneration. ACS Appl Mater Interfaces 11:8878–8895. doi:10.1021/acsami.8b22123.
  • Wu Y, Zhu S, Wu C, et al. (2014). A Bi-lineage conducive scaffold for osteochondral defect regeneration. Adv Funct Mater 24:4473–83. doi:10.1002/adfm.201304304.
  • Xu J, Feng Q, Lin S, et al. (2019). Injectable stem cell-laden supramolecular hydrogels enhance in situ osteochondral regeneration via the sustained co-delivery of hydrophilic and hydrophobic chondrogenic molecules. Biomaterials 210:51–61. doi:10.1016/j.biomaterials.2019.04.031.
  • Xu X, Liang Y, Li X, et al. (2021). Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration. Biomaterials 269:120539. doi:10.1016/j.biomaterials.2020.120539.
  • Xuan H, Hu H, Geng C, et al. (2020). Biofunctionalized chondrogenic shape-memory ternary scaffolds for efficient cell-free cartilage regeneration. Acta Biomater 105:97–110. doi:10.1016/j.actbio.2020.01.015.
  • Yang SY, Hwang TH, Che L, et al. (2015). Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering. Biomed Mater 10:035011. doi:10.1088/1748-6041/10/3/035011.
  • Yang W, Zheng Y, Chen J, et al. (2019). Preparation and characterization of the collagen/cellulose nanocrystals/USPIO scaffolds loaded kartogenin for cartilage regeneration. Mater Sci Eng C Mater Biol Appl 99:1362–73. doi:10.1016/j.msec.2019.02.071.
  • Yang W, Zhu P, Huang H, et al. (2019). Functionalization of novel theranostic hydrogels with kartogenin-grafted USPIO nanoparticles to enhance cartilage regeneration. ACS Appl Mater Interfaces 11:34744–34754. doi:10.1021/acsami.9b12288.
  • Yin H, Wang J, Gu Z, et al. (2017). Evaluation of the potential of kartogenin encapsulated poly(L-lactic acid-co-caprolactone)/collagen nanofibers for tracheal cartilage regeneration. J Biomater Appl 32:331–41. doi:10.1177/0885328217717077.
  • Yu H, Huang C, Kong X, et al. (2022). Nanoarchitectonics of cartilage-targeting hydrogel microspheres with reactive oxygen species responsiveness for the repair of osteoarthritis. ACS Appl Mater Interfaces 14:40711–40723. doi:10.1021/acsami.2c12703.
  • Yuan F, Wang H, Guan J, et al. (2021). Fabrication of injectable chitosan-chondroitin sulfate hydrogel embedding kartogenin-loaded microspheres as an ultrasound-triggered drug delivery system for cartilage tissue engineering. Pharmaceutics 13:1487. doi:10.3390/pharmaceutics13091487.
  • Yuan X, Wan J, Yang Y, et al. (2023). Thermosensitive hydrogel for cartilage regeneration via synergistic delivery of SDF-1α like polypeptides and kartogenin. Carbohydr Polym 304:120492. doi:10.1016/j.carbpol.2022.120492.
  • Yuan Z, Lyu Z, Zhang W, et al. (2022). Porous bioactive prosthesis with chitosan/mesoporous silica nanoparticles microspheres sequentially and sustainedly releasing platelet-derived growth factor-BB and kartogenin: a new treatment strategy for osteoarticular lesions. Front Bioeng Biotech 10:839120. doi:10.3389/fbioe.2022.839120.
  • Zare P, Pezeshki-Modaress M, Davachi SM, et al. (2021). Alginate sulfate-based hydrogel/nanofiber composite scaffold with controlled Kartogenin delivery for tissue engineering. Carbohydr Polym 266:118123. doi:10.1016/j.carbpol.2021.118123.
  • Zeng W, Zhang Y, Wang D, et al. (2021). Intra-articular injection of kartogenin-enhanced bone marrow–derived mesenchymal stem cells in the treatment of knee osteoarthritis in a rat model. Am J Sports Med 49:2795–2809. doi:10.1177/03635465211023183.
  • Zhang J, Wang JH. (2014). Kartogenin induces cartilage-like tissue formation in tendon–bone junction. Bone Res 2:14008. doi:10.1038/boneres.2014.8.
  • Zhang J, Xia W, Liu P, et al. (2010). Chitosan modification and pharmaceutical/biomedical applications. Mar Drugs 8:1962–87. doi:10.3390/md8071962.
  • Zhang J, Yuan T, Zheng N, et al. (2017). The combined use of kartogenin and platelet-rich plasma promotes fibrocartilage formation in the wounded rat Achilles tendon entheses. Bone Joint Res 6:231–44. doi:10.1302/2046-3758.64.BJR-2017-0268.R1.
  • Zhang L, Hu J, Athanasiou KA. (2009). The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng 37:1–57. doi:10.1615/critrevbiomedeng.v37.i1-2.10.
  • Zhang P, Chen J, Sun Y, et al. (2023). A 3D multifunctional bi-layer scaffold to regulate stem cell behaviors and promote osteochondral regeneration. J Mater Chem B 11:1240–1261. doi:10.1039/d2tb02203f.
  • Zhang S, Hu P, Liu T, et al. (2019). Kartogenin hydrolysis product 4-aminobiphenyl distributes to cartilage and mediates cartilage regeneration. Theranostics 9:7108–21. doi:10.7150/thno.38182.
  • Zhang W, Chen R, Xu X, et al. (2022). Construction of biocompatible hydrogel scaffolds with a long-term drug release for facilitating cartilage repair. Front Pharmacol 13:922032. doi:10.3389/fphar.2022.922032.
  • Zhang W, Ling C, Zhang A, et al. (2020). An all-silk-derived functional nanosphere matrix for sequential biomolecule delivery and in situ osteochondral regeneration. Bioact Mater 5:832–843. doi:10.1016/j.bioactmat.2020.05.003.
  • Zhang Y, Song W, Lu Y, et al. (2022). Recent advances in poly(α-L-glutamic acid)-based nanomaterials for drug delivery. Biomolecules 12:636. doi:10.3390/biom12050636.
  • Zhang YS, Khademhosseini A. (2017). Advances in engineering hydrogels. Science 356:f3627. doi:10.1126/science.aaf3627.
  • Zhou Q, Zhang J, Yuan S, et al. (2019). A new insight of kartogenin induced the mesenchymal stem cells (MSCs) selectively differentiate into chondrocytes by activating the bone morphogenetic protein 7 (BMP-7)/Smad5 pathway. Med Sci Monit 25:4960–7. doi:10.12659/MSM.916696.
  • Zhu C, Huo D, Chen Q, et al. (2017). A eutectic mixture of natural fatty acids can serve as the gating material for near-infrared-triggered drug release. Adv Mater 29:1703702. doi:10.1002/adma.201703702.
  • Zhu Q, Ma Z, Li H, et al. (2019). Enhancement of rotator cuff tendon–bone healing using combined aligned electrospun fibrous membranes and kartogenin. RSC Adv 9:15582–15592. doi:10.1039/c8ra09849b.
  • Zhu Y, Tan J, Zhu H, et al. (2017). Development of kartogenin-conjugated chitosan–hyaluronic acid hydrogel for nucleus pulposus regeneration. Biomater Sci 5:784–91. doi:10.1039/c7bm00001d.