1,729
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Intricate subcellular journey of nanoparticles to the enigmatic domains of endoplasmic reticulum

ORCID Icon, &
Article: 2284684 | Received 24 Aug 2023, Accepted 05 Nov 2023, Published online: 21 Nov 2023

References

  • Abdullah TM, Whatmore J, Bremer E, et al. (2022). Endoplasmic reticulum stress-induced release and binding of calreticulin from human ovarian cancer cells. Cancer Immunol, Immunother 71:1–23.
  • Agraharam G, Saravanan N, Girigoswami A, Girigoswami K. (2022). Future of Alzheimer’s disease: nanotechnology-based diagnostics and therapeutic approach. BioNanoSci 12:1002–17. doi: 10.1007/s12668-022-00998-8.
  • Ahmed SS, Husain RA, Kumar S, Ramakrishnan V. (2016). Association between MDR1 gene polymorphisms and Parkinson’s disease in Asian and Caucasian populations: a meta-analysis. J Neurol Sci 368:255–62. doi: 10.1016/j.jns.2016.07.041.
  • Almanza A, Carlesso A, Chintha C, et al. (2019). Endoplasmic reticulum stress signalling–from basic mechanisms to clinical applications. Febs J 286:241–78. doi: 10.1111/febs.14608.
  • Alnuqaydan AM, Rah B, Almutary AG, Chauhan SS. (2020). Synergistic antitumor effect of 5-fluorouracil and withaferin-A induces endoplasmic reticulum stress-mediated autophagy and apoptosis in colorectal cancer cells. Am J Cancer Res 10:799.
  • Amen OM, Sarker SD, Ghildyal R, Arya A. (2019). Endoplasmic reticulum stress activates unfolded protein response signaling and mediates inflammation, obesity, and cardiac dysfunction: therapeutic and molecular approach. Front Pharmacol 10:977. doi: 10.3389/fphar.2019.00977.
  • Amsaveni G, Farook AS, Haribabu V, et al. (2013). Engineered multifunctional nanoparticles for DLA cancer cells targeting, sorting, MR imaging and drug delivery. Adv Sci Engng Med 5:1340–8. doi: 10.1166/asem.2013.1425.
  • Andhavarapu S, Katuri A, Bryant J, et al. (2020). Intersecting roles of ER stress, mitochondrial dysfunction, autophagy, and calcium homeostasis in HIV-associated neurocognitive disorder. J Neurovirol 26:664–75. doi: 10.1007/s13365-020-00861-0.
  • Banerjee A, Pathak S, Subramanium VD, et al. (2017). Strategies for targeted drug delivery in treatment of colon cancer: current trends and future perspectives. Drug Discov Today 22:1224–32. doi: 10.1016/j.drudis.2017.05.006.
  • Bardo S, Cavazzini MG, Emptage N. (2006). The role of the endoplasmic reticulum Ca2+ store in the plasticity of central neurons. Trends Pharmacol Sci 27:78–84. doi: 10.1016/j.tips.2005.12.008.
  • Biasutto L, Mattarei A, La Spina M, et al. (2019). Strategies to target bioactive molecules to subcellular compartments. Focus on natural compounds. Eur J Med Chem 181:111557. doi: 10.1016/j.ejmech.2019.07.060.
  • Bilen M, Benhammouda S, Slack RS, Germain M. (2022). The integrated stress response as a key pathway downstream of mitochondrial dysfunction. Curr Opin Physiol 27:100555. doi: 10.1016/j.cophys.2022.100555.
  • Buchman JT, Hudson-Smith NV, Landy KM, Haynes CL. (2019). Understanding nanoparticle toxicity mechanisms to inform redesign strategies to reduce environmental impact. Acc Chem Res 52:1632–42. doi: 10.1021/acs.accounts.9b00053.
  • Cai B, Hou M, Zhang S, et al. (2021). Dual Targeting of Endoplasmic Reticulum by Redox-Deubiquitination Regulation for Cancer Therapy. Int J Nanomedicine 16:5193–209. doi: 10.2147/IJN.S321612.
  • Cai Y, Arikkath J, Yang L, et al. (2016). Interplay of endoplasmic reticulum stress and autophagy in neurodegenerative disorders. Autophagy 12:225–44. doi: 10.1080/15548627.2015.1121360.
  • Cárdenas M, Campbell RA, Arteta MY, et al. (2023). Review of structural design guiding the development of lipid nanoparticles for nucleic acid delivery. Current Opinion in Colloid & Interface Science 66:101705. doi: 10.1016/j.cocis.2023.101705.
  • Cardinal JW, Margison GP, Mynett KJ, et al. (2001). Increased susceptibility to streptozotocin-induced β-cell apoptosis and delayed autoimmune diabetes in alkylpurine-DNA-N-glycosylase-deficient mice. Mol Cell Biol 21:5605–13. doi: 10.1128/MCB.21.16.5605-5613.2001.
  • Carvalho A, Chu J, Meinguet C, et al. (2017). A harmine-derived beta-carboline displays anti-cancer effects in vitro by targeting protein synthesis. Eur J Pharmacol 805:25–35. doi: 10.1016/j.ejphar.2017.03.034.
  • Cerrato CP, Künnapuu K, Langel Ü. (2017). Cell-penetrating peptides with intracellular organelle targeting. Expert Opin Drug Deliv 14:245–55. doi: 10.1080/17425247.2016.1213237.
  • Chatanaka MK, Sohaei D, Diamandis EP, Prassas I. (2023). Beyond the amyloid hypothesis: how current research implicates autoimmunity in Alzheimer’s disease pathogenesis. Crit Rev Clin Lab Sci 60:398–426. doi: 10.1080/10408363.2023.2187342.
  • Chen H, Chan DC. (2009). Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum Mol Genet 18:R169–R176. doi: 10.1093/hmg/ddp326.
  • Chen SZ, Ling Y, Yu LX, et al. (2021). 4-phenylbutyric acid promotes hepatocellular carcinoma via initiating cancer stem cells through activation of PPAR-α. Clin Transl Med 11:e379. doi: 10.1002/ctm2.379.
  • Chen Y, Yang J, Fu S, Wu J. (2020). Gold nanoparticles as radiosensitizers in cancer radiotherapy. Int J Nanomedicine 15:9407–30. doi: 10.2147/IJN.S272902.
  • Cheng F-Y, Lee Y-H, Hsu Y-H, et al. (2019). Promising therapeutic effect of thapsigargin nanoparticles on chronic kidney disease through the activation of Nrf2 and FoxO1. Aging (Albany NY) 11:9875–92. doi: 10.18632/aging.102437.
  • Cheng G, Xie A, Yan Z, et al. (2023). Nanomedicines for Alzheimer’s disease: therapies based on pathological mechanisms. Brain-X 1:e27. doi: 10.1002/brx2.27.
  • Colston J, Horobin R, Rashid-Doubell F, et al. (2003). Why fluorescent probes for endoplasmic reticulum are selective: an experimental and QSAR-modelling study. Biotech Histochem 78:323–32. doi: 10.1080/10520290310001646659.
  • Cornell RB, Ridgway ND. (2015). CTP: phosphocholine cytidylyltransferase: function, regulation, and structure of an amphitropic enzyme required for membrane biogenesis. Prog Lipid Res 59:147–71. doi: 10.1016/j.plipres.2015.07.001.
  • da Silva DC, Valentão P, Andrade PB, Pereira DM. (2020). Endoplasmic reticulum stress signaling in cancer and neurodegenerative disorders: tools and strategies to understand its complexity. Pharmacol Res 155:104702. doi: 10.1016/j.phrs.2020.104702.
  • Das B, Samal S, Hamdi H, et al. (2023). Role of endoplasmic reticulum stress-related unfolded protein response and its implications in dengue virus infection for biomarker development. Life Sci 329:121982. doi: 10.1016/j.lfs.2023.121982.
  • De Pedro-Cuesta J, Almazán-Isla J, Tejedor-Romero L, et al. (2021). Human prion disease surveillance in Spain, 1993-2018: an overview. Prion 15:94–106. doi: 10.1080/19336896.2021.1933873.
  • Deepika B, Agnishwar G, Koyeli G. (2023). Antioxidant and anticancer activity of nano lycopene. Research Journal of Biotechnology 18:6. Vol.
  • Deepika R, Girigoswami K, Murugesan R, Girigoswami A. (2018). Influence of divalent cation on morphology and drug delivery efficiency of mixed polymer nanoparticles. Curr Drug Deliv 15:652–7. doi: 10.2174/1567201814666170825160617.
  • Deka D, D’Incà R, Sturniolo GC, et al. (2022). Role of ER stress mediated unfolded protein responses and ER stress inhibitors in the pathogenesis of inflammatory bowel disease. Dig Dis Sci 67:5392–406.,. doi: 10.1007/s10620-022-07467-y.
  • D’Souza AA, Devarajan PV. (2015). Asialoglycoprotein receptor mediated hepatocyte targeting—Strategies and applications. J Control Release 203:126–39. doi: 10.1016/j.jconrel.2015.02.022.
  • D’Souza GG, Weissig V. (2009). Subcellular targeting: a new frontier for drug-loaded pharmaceutical nanocarriers and the concept of the magic bullet. Expert Opin Drug Deliv 6:1135–48. doi: 10.1517/17425240903236101.
  • El Manaa W, Duplan E, Goiran T, et al. (2021). Transcription-and phosphorylation-dependent control of a functional interplay between XBP1s and PINK1 governs mitophagy and potentially impacts Parkinson disease pathophysiology. Autophagy 17:4363–85. doi: 10.1080/15548627.2021.1917129.
  • El-Refaie WM, Ghazy MS, Ateyya FA, et al. (2023). Rhein methotrexate-decorated solid lipid nanoparticles altering adjuvant arthritis progression through endoplasmic reticulum stress-mediated apoptosis. Inflammopharmacology :1–16. doi: 10.1007/s10787-023-01295-w.
  • Fan L, He Z, Head SA, et al. (2018). Clofoctol and sorafenib inhibit prostate cancer growth via synergistic induction of endoplasmic reticulum stress and UPR pathways. Cancer Manag Res 10:4817–29. doi: 10.2147/CMAR.S175256.
  • Fan N, Zhao J, Zhao W, et al. (2022). Celastrol-loaded lactosylated albumin nanoparticles attenuate hepatic steatosis in non-alcoholic fatty liver disease. J Control Release 347:44–54. doi: 10.1016/j.jconrel.2022.04.034.
  • Fontana F, Moretti RM, Raimondi M, et al. (2019). δ-Tocotrienol induces apoptosis, involving endoplasmic reticulum stress and autophagy, and paraptosis in prostate cancer cells. Cell Prolif 52:e12576.
  • Franco-Iborra S, Vila M, Perier C. (2018). Mitochondrial quality control in neurodegenerative diseases: focus on Parkinson’s disease and Huntington’s disease. Front Neurosci 12:342. doi: 10.3389/fnins.201800342.
  • Ghosh R, Girigoswami K. (2008). NADH dehydrogenase subunits are overexpressed in cells exposed repeatedly to H2O2. Mutat Res 638:210–5. doi: 10.1016/j.mrfmmm.2007.08.008.
  • Ghosh S, Girigoswami K, Girigoswami A. (2019). Membrane-encapsulated camouflaged nanomedicines in drug delivery. Nanomedicine (Lond) 14:2067–82. doi: 10.2217/nnm-2019-0155.
  • Giorgi C, De Stefani D, Bononi A, et al. (2009). Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int J Biochem Cell Biol 41:1817–27. doi: 10.1016/j.biocel.2009.04.010.
  • Girigoswami A, Li T, Jung C, et al. (2009). Gold nanoparticle-based label-free detection of BRCA1 mutations utilizing DNA ligation on DNA microarray. J Nanosci Nanotechnol 9:1019–24. doi: 10.1166/jnn.2009.c077.
  • Girigoswami A, Yassine W, Sharmiladevi P, et al. (2018). Camouflaged nanosilver with excitation wavelength dependent high quantum yield for targeted theranostic. Sci Rep 8:16459. doi: 10.1038/s41598-018-34843-4.
  • Girona J, Rodríguez-Borjabad C, Ibarretxe D, et al. (2019). The circulating GRP78/BiP is a marker of metabolic diseases and atherosclerosis: bringing endoplasmic reticulum stress into the clinical scenario. J Clin Med 8:1793. doi: 10.3390/jcm8111793.
  • Godoy JA, Rios JA, Picón-Pagès P, et al. (2021). Mitostasis, calcium and free radicals in health, aging and neurodegeneration. Biomolecules 11:1012. doi: 10.3390/biom11071012.
  • Gong Y, Lin J, Ma Z, et al. (2021). Mitochondria-associated membrane-modulated Ca2+ transfer: a potential treatment target in cardiac ischemia reperfusion injury and heart failure. Life Sci 278:119511. doi: 10.1016/j.lfs.2021.119511.
  • Guo C, Ma R, Liu X, et al. (2023). Silica nanoparticles promote oxLDL-induced macrophage lipid accumulation and apoptosis via endoplasmic reticulum stress signaling. Sci Total Environ 904:167127. doi: 10.1016/j.scitotenv.2018.02.312.
  • Guo Y, Fan Y, Wang Z, et al. (2022). Chemotherapy mediated by biomimetic polymeric nanoparticles potentiates enhanced tumor immunotherapy via amplification of endoplasmic reticulum stress and mitochondrial dysfunction. Adv Mater 34:2206861. doi: 10.1002/adma.202206861.
  • Gurunathan S, Kang M-H, Jeyaraj M, Kim J-H. (2021). Palladium nanoparticle-induced oxidative stress, endoplasmic reticulum stress, apoptosis, and immunomodulation enhance the biogenesis and release of exosome in human leukemia monocytic cells (THP-1). Int J Nanomedicine 16:2849–77. doi: 10.2147/IJN.S305269.
  • Han R, Liu Y, Li S, et al. (2023). PINK1-PRKN mediated mitophagy: differences between in vitro and in vivo models. Autophagy 19:1396–405. doi: 10.1080/15548627.2022.2139080.
  • Haribabu V, Girigoswami K, Girigoswami A. (2021). Magneto-silver core–shell nanohybrids for theragnosis. Nano-Structures & Nano-Objects 25:100636. doi: 10.1016/j.nanoso.2020.100636.
  • Harini K, Girigoswami K, Anand AV, et al. (2022). Nano-mediated strategies for metal ion–induced neurodegenerative disorders: focus on Alzheimer’s and Parkinson’s diseases. Curr Pharmacol Rep 8:450–63. doi: 10.1007/s40495-022-00307-7.
  • Harini K, Pallavi P, Gowtham P, et al. (2022). Smart polymer-based reduction responsive therapeutic delivery to cancer cells. Curr Pharmacol Rep 8:205–11. doi: 10.1007/s40495-022-00282-z.
  • Himalian R, Singh SK, Singh MP. (2022). Ameliorative role of nutraceuticals on neurodegenerative diseases using the Drosophila melanogaster as a discovery model to define bioefficacy. J Am Nutr Assoc 41:511–39. doi: 10.1080/07315724.2021.1904305.
  • Hiss DC, Gabriels GA. (2009). Implications of endoplasmic reticulum stress, the unfolded protein response and apoptosis for molecular cancer therapy. Part I: targeting p53, Mdm2, GADD153/CHOP, GRP78/BiP and heat shock proteins. Expert Opin Drug Discov 4:799–821. doi: 10.1517/17460440903052559.
  • Holz MK, Ballif BA, Gygi SP, Blenis J. (2005). mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123:569–80. doi: 10.1016/j.cell.2005.10.024.
  • Hosseinikhah SM, Gheybi F, Moosavian SA, et al. (2023). Role of exosomes in tumour growth, chemoresistance and immunity: state-of-the-art. J Drug Target 31:32–50. doi: 10.1080/1061186X.2022.2114000.
  • Hu X, Gao X, Gao G, et al. (2021). Discovery of β-carboline-(phenylsulfonyl) furoxan hybrids as potential anti-breast cancer agents. Bioorg Med Chem Lett 40:127952. doi: 10.1016/j.bmcl.2021.127952.
  • Huang T, Zhou J, Zhang L, et al. (2022). Azelnidipine nanoparticles break calcium homeostasis and induce severe ER stress combined with medroxyprogesterone acetate for endometrial cancer therapy. Nano Today 47:101682. doi: 10.1016/j.nantod.2022.101682.
  • Huang X, Chen J, Wu W, et al. (2020). Delivery of MutT homolog 1 inhibitor by functionalized graphene oxide nanoparticles for enhanced chemo-photodynamic therapy triggers cell death in osteosarcoma. Acta Biomater 109:229–43. doi: 10.1016/j.actbio.2020.04.009.
  • Hussain S, Du W, Zhang M, et al. (2018). A series of two-photon absorption pyridinium sulfonate inner salts targeting endoplasmic reticulum (ER), inducing cellular stress and mitochondria-mediated apoptosis in cancer cells. J Mater Chem B 6:1943–50. doi: 10.1039/c8tb00173a.
  • Iorio R, Celenza G, Petricca S. (2021). Mitophagy: molecular mechanisms, new concepts on Parkin activation and the emerging role of AMPK/ULK1 Axis. Cells 11:30. doi: 10.3390/cells11010030.3
  • Iversen T-G, Skotland T, Sandvig K. (2011). Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6:176–85. doi: 10.1016/j.nantod.2011.02.003.
  • Jang M, Kim SS, Lee J. (2013). Cancer cell metabolism: implications for therapeutic targets. Exp Mol Med 45:e45–e. doi: 10.1038/emm.2013.85.
  • Jeon YJ, Khelifa S, Ratnikov B, et al. (2015). Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. Cancer Cell 27:354–69. doi: 10.1016/j.ccell.2015.02.006.
  • Jeong SA, Yang C, Song J, et al. (2022). Hesperidin Suppresses the Proliferation of Prostate Cancer Cells by Inducing Oxidative Stress and Disrupting Ca2+ Homeostasis. Antioxidants 11:1633. doi: 10.3390/antiox11091633.
  • Jia S, Jin L, Cheng X, et al. (2022). Bicyclol alleviates high-fat diet-induced hepatic ER stress-and autophagy-associated non-alcoholic fatty liver disease/non-alcoholic steatohepatitis in mice. Drug Dev Ind Pharm 48:247–54. doi: 10.1080/03639045.2022.2106238.
  • Jiang W, Chen L, Guo X, et al. (2022). Combating multidrug resistance and metastasis of breast cancer by endoplasmic reticulum stress and cell-nucleus penetration enhanced immunochemotherapy. Theranostics 12:2987–3006. doi: 10.7150/thno.71693.
  • Kamkaew A, Thavornpradit S, Puangsamlee T, et al. (2015). Oligoethylene glycol-substituted aza-BODIPY dyes as red emitting ER-probes. Org Biomol Chem 13:8271–6. doi: 10.1039/c5ob01104c.
  • Kavya J, Amsaveni G, Nagalakshmi M, et al. (2013). Silver nanoparticles induced lowering of BCl2/Bax causes Dalton’s Lymphoma tumour cell death in mice. j Bionanosci 7:276–81. doi: 10.1166/jbns.2013.1135.
  • Kiang KM-Y, Tang W, Song Q, et al. (2023). Targeting unfolded protein response using albumin-encapsulated nanoparticles attenuates temozolomide resistance in glioblastoma. Br J Cancer 128:1955–63. doi: 10.1038/s41416-023-02225-x.
  • Kodiha M, Wang YM, Hutter E, et al. (2015). Off to the organelles-killing cancer cells with targeted gold nanoparticles. Theranostics 5:357–70. doi: 10.7150/thno.10657.
  • Lam AK, Galione A. (2013). The endoplasmic reticulum and junctional membrane communication during calcium signaling. Biochim Biophys Acta 1833:2542–59. doi: 10.1016/j.bbamcr.2013.06.004.
  • Lambourne SL, Sellers LA, Bush TG, et al. (2005). Increased tau phosphorylation on mitogen-activated protein kinase consensus sites and cognitive decline in transgenic models for Alzheimer’s disease and FTDP-17: evidence for distinct molecular processes underlying tau abnormalities. Mol Cell Biol 25:278–93. doi: 10.1128/MCB.25.1.278-293.2005.
  • Lan B, He Y, Sun H, et al. (2019). The roles of mitochondria-associated membranes in mitochondrial quality control under endoplasmic reticulum stress. Life Sci 231:116587. doi: 10.1016/j.lfs.2019.116587.
  • Lazer LM, Sadhasivam B, Palaniyandi K, et al. (2018). Chitosan-based nano-formulation enhances the anticancer efficacy of hesperetin. Int J Biol Macromol 107:1988–98. doi: 10.1016/j.ijbiomac.2017.10.064.
  • Lee J-H, Wolfe DM, Darji S, et al. (2020). β2-adrenergic agonists rescue lysosome acidification and function in PSEN1 deficiency by reversing defective ER-to-lysosome delivery of ClC-7. J Mol Biol 432:2633–50. doi: 10.1016/j.jmb.2020.02.021.
  • Legname G, Scialò C. (2020). On the role of the cellular prion protein in the uptake and signaling of pathological aggregates in neurodegenerative diseases. Prion 14:257–70. doi: 10.1080/19336896.2020.1854034.
  • Li D, Liu P, Tan Y, et al. (2022). Type I photosensitizers based on aggregation-induced emission: a rising star in photodynamic therapy. Biosensors (Basel) 12:722. doi: 10.3390/bios12090722.
  • Li X, Zhen M, Zhou C, et al. (2022). Dual regulation on oxidative stress and endoplasmic reticulum stress by [70] fullerenes for reversing insulin resistance in diabetes. Nano Today 45:101541. doi: 10.1016/j.nantod.2022.101541.
  • Li X, Zhou D, Cai Y, et al. (2022). Endoplasmic reticulum stress inhibits AR expression via the PERK/eIF2α/ATF4 pathway in luminal androgen receptor triple-negative breast cancer and prostate cancer. NPJ Breast Cancer 8:2. doi: 10.1038/s41523-021-00370-1.
  • Li X, Zhu F, Jiang J, et al. (2016). Simultaneous inhibition of the ubiquitin-proteasome system and autophagy enhances apoptosis induced by ER stress aggravators in human pancreatic cancer cells. Autophagy 12:1521–37. doi: 10.1080/15548627.2016.1191722.
  • Li Y, Ma R, Liu X, et al. (2019). Endoplasmic reticulum stress-dependent oxidative stress mediated vascular injury induced by silica nanoparticles in vivo and in vitro. NanoImpact 14:100169. doi: 10.1016/j.impact.2019.100169.
  • Lin Y, Jiang M, Chen W, et al. (2019). Cancer and ER stress: mutual crosstalk between autophagy, oxidative stress and inflammatory response. Biomed Pharmacother 118:109249. doi: 10.1016/j.biopha.2019.109249.
  • Liu C, Zhou B, Meng M, et al. (2021). FOXA3 induction under endoplasmic reticulum stress contributes to non-alcoholic fatty liver disease. J Hepatol 75:150–62. doi: 10.1016/j.jhep.2021.01.042.
  • Liu J, Fan L, Yu H, et al. (2019). Endoplasmic reticulum stress causes liver cancer cells to release exosomal miR-23a-3p and up-regulate programmed death ligand 1 expression in macrophages. Hepatology 70:241–58. doi: 10.1002/hep.30607.
  • Luarte A, Cornejo VH, Bertin F, et al. (2018). The axonal endoplasmic reticulum: one organelle—many functions in development, maintenance, and plasticity. Dev Neurobiol 78:181–208. doi: 10.1002/dneu.22560.
  • Luo L, Lv T, Wang Q, et al. (2012). Activated Protein C Induces Endoplasmic Reticulum Stress and Attenuates Lipopolysaccharide-Induced Apoptosis Mediated by Glycogen Synthase Kinase-3β. Mediators Inflamm 2012:485279–7. doi: 10.1155/2012/485279.
  • Luo Y, Jiao Q, Chen Y. (2022). Targeting endoplasmic reticulum stress—the responder to lipotoxicity and modulator of non-alcoholic fatty liver diseases. Expert Opin Ther Targets 26:1073–85. doi: 10.1080/14728222.2022.2170780.
  • Ma M, Luan X, Zheng H, et al. (2023). A Mulberry Diels-Alder-Type Adduct, Kuwanon M, Triggers Apoptosis and Paraptosis of Lung Cancer Cells through Inducing Endoplasmic Reticulum Stress. Int J Mol Sci 24:1015. doi: 10.3390/ijms24021015.
  • Ma XM, Blenis J. (2009). Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10:307–18. doi: 10.1038/nrm2672.
  • Mandal N, Grambergs R, Mondal K, et al. (2021). Role of ceramides in the pathogenesis of diabetes mellitus and its complications. J Diabetes Complications 35:107734. doi: 10.1016/j.jdiacomp.2020.107734.
  • Mandlik DS, Mandlik SK, S A. (2022). Therapeutic implications of glycogen synthase kinase-3β in Alzheimer’s disease: a novel therapeutic target. Int J Neurosci :1–17. doi: 10.1080/00207454.2022.2130297.
  • Mariadoss AVA, Sivakumar AS, Lee C-H, Kim SJ. (2022). Diabetes mellitus and diabetic foot ulcer: etiology, biochemical and molecular based treatment strategies via gene and nanotherapy. Biomed Pharmacother 151:113134. doi: 10.1016/j.biopha.2022.113134.
  • Martucciello S, Masullo M, Cerulli A, Piacente S. (2020). Natural products targeting ER stress, and the functional link to mitochondria. Int J Mol Sci 21:1905. doi: 10.3390/ijms21061905.
  • Masoudifar R, Pouyanfar N, Liu D, et al. (2022). Surface engineered metal-organic frameworks as active targeting nanomedicines for mono-and multi-therapy. Appl Mater Today 29:101646. doi: 10.1016/j.apmt.2022.101646.
  • McGill A, Frank A, Emmett N, et al. (2005). The antipsoriatic drug anthralin accumulates in keratinocyte mitochondria, dissipates mitochondrial membrane potential, and induces apoptosis through a pathway dependent on respiratory competent mitochondria. Faseb J 19:1012–4. doi: 10.1096/fj.04-2664fje.
  • Mercy DJ, Harini K, Madhumitha S, et al. (2023). pH-responsive polymeric nanostructures for cancer theranostics. J Met Mater Miner 33:1–15. doi: 10.55713/jmmm.v33i2.1609.
  • Montane J, Cadavez L, Novials A. (2014). Stress and the inflammatory process: a major cause of pancreatic cell death in type 2 diabetes. Diabetes Metab Syndr Obes 7:25–34. doi: 10.2147/DMSO.S37649.
  • Moon H, Kim B, Gwak H, et al. (2016). Autophagy and protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2 alpha kinase (eIF2α) pathway protect ovarian cancer cells from metformin-induced apoptosis. Mol Carcinog 55:346–56. doi: 10.1002/mc.22284.
  • Mortezaee K, Majidpoor J. (2023). Dysregulated metabolism: a friend-to-foe skewer of macrophages. Int Rev Immunol 42:287–303. doi: 10.1080/08830185.2022.2095374.
  • Muñoz JP, Ivanova S, Sánchez-Wandelmer J, et al. (2013). Mfn2 modulates the UPR and mitochondrial function via repression of PERK. Embo J 32:2348–61. doi: 10.1038/emboj.2013.168.
  • Neha Desai n, Momin M, Khan T, et al. (2021). Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opin Drug Deliv 18:1261–90. doi: 10.1080/17425247.2021.1912008.
  • Nguyen MP, Jain V, Iansante V, et al. (2020). Clinical application of hepatocyte transplantation: current status, applicability, limitations, and future outlook. Expert Rev Gastroenterol Hepatol 14:185–96. doi: 10.1080/17474124.2020.1733975.
  • Ni J, Wang Y, Zhang H, et al. (2021). Aggregation-induced generation of reactive oxygen species: mechanism and photosensitizer construction. Molecules 26:268. doi: 10.3390/molecules26020268.
  • Noël C, Simard J-C, Girard D. (2016). Gold nanoparticles induce apoptosis, endoplasmic reticulum stress events and cleavage of cytoskeletal proteins in human neutrophils. Toxicol in Vitro 31:12–22. doi: 10.1016/j.tiv.2015.11.003.
  • O’Hara DM, Kalia SK, Kalia LV. (2020). Methods for detecting toxic α-synuclein species as a biomarker for Parkinson’s disease. Crit Rev Clin Lab Sci 57:291–307. doi: 10.1080/10408363.2019.1711359.
  • Ortega E, Vigueras G, Ballester FJ, Ruiz J. (2021). Targeting translation: a promising strategy for anticancer metallodrugs. Coord Chem Rev 446:214129. doi: 10.1016/j.ccr.2021.214129.
  • Ozcan L, Tabas I. (2012). Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu Rev Med 63:317–28. doi: 10.1146/annurev-med-043010-144749.
  • Özduran G, Becer E, Vatansever HS, Yücecan S. (2022). Neuroprotective effects of catechins in an experimental Parkinson’s disease model and SK-N-AS cells: evaluation of cell viability, anti-inflammatory and anti-apoptotic effects. Neurol Res 44:511–23. doi: 10.1080/01616412.2021.2024715.
  • Pallavi P, Harini K, Crowder S, et al. (2023). Rhodamine-Conjugated Anti-Stokes Gold Nanoparticles with Higher ROS Quantum Yield as Theranostic Probe to Arrest Cancer and MDR Bacteria. Appl Biochem Biotechnol 195:6979–93. doi: 10.1007/s12010-023-04475-0.
  • Pallavi P, Harini K, Gowtham P, et al. (2022). Fabrication of polymersomes: a macromolecular architecture in nanotherapeutics. Chemistry 4:1028–43. doi: 10.3390/chemistry4030070.
  • Pandey S, Nandi A, Basu S, Ballav N. (2020). Inducing endoplasmic reticulum stress in cancer cells using graphene oxide-based nanoparticles. Nanoscale Adv 2:4887–94. doi: 10.1039/d0na00338g.
  • Pandey S, Patil S, Ballav N, Basu S. (2020). Spatial targeting of Bcl-2 on endoplasmic reticulum and mitochondria in cancer cells by lipid nanoparticles. J Mater Chem B 8:4259–66. doi: 10.1039/d0tb00408a.
  • Parker R, Phan T, Baumeister P, et al. (2001). Identification of TFII-I as the endoplasmic reticulum stress response element binding factor ERSF: its autoregulation by stress and interaction with ATF6. Mol Cell Biol 21:3220–33. doi: 10.1128/MCB.21.9.3220-3233.2001.
  • Piao MJ, Han X, Kang KA, et al. (2022). The Endoplasmic Reticulum Stress Response Mediates Shikonin-Induced Apoptosis of 5-Fluorouracil–Resistant Colorectal Cancer Cells. Biomol Ther (Seoul) 30:265–73. doi: 10.4062/biomolther.2021.118.
  • Prusiner SB. (1998). Prions. Proc Natl Acad Sci U S A 95:13363–83. doi: 10.1073/pnas.95.23.13363.
  • Pyrczak-Felczykowska A, Reekie TA, Jąkalski M, et al. (2022). The isoxazole derivative of usnic acid induces an ER stress response in breast cancer cells that leads to paraptosis-like cell death. Int J Mol Sci 23:1802. doi: 10.3390/ijms23031802.
  • Qi W, Jin L, Wu C, et al. (2023). Treatment with FAP-targeted zinc ferrite nanoparticles for rheumatoid arthritis by inducing endoplasmic reticulum stress and mitochondrial damage. Mater Today Bio 21:100702. doi: 10.1016/j.mtbio.2023.100702.
  • Qin S, Jiang J, Lu Y, et al. (2020). Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduct Target Ther 5:228. doi: 10.1038/s41392-020-00313-5.
  • Quan J-H, Gao FF, Chu J-Q, et al. (2021). Silver nanoparticles induce apoptosis via NOX4-derived mitochondrial reactive oxygen species and endoplasmic reticulum stress in colorectal cancer cells. Nanomedicine (Lond) 16:1357–75. doi: 10.2217/nnm-2021-0098.
  • Quan J-H, Gao FF, Lee M, et al. (2020). Involvement of endoplasmic reticulum stress response and IRE1-mediated ASK1/JNK/Mcl-1 pathways in silver nanoparticle-induced apoptosis of human retinal pigment epithelial cells. Toxicology 442:152540. doi: 10.1016/j.tox.2020.152540.
  • Rakotoarisoa M, Angelov B, Drechsler M, et al. (2022). Liquid crystalline lipid nanoparticles for combined delivery of curcumin, fish oil and BDNF: in vitro neuroprotective potential in a cellular model of tunicamycin-induced endoplasmic reticulum stress. Smart Materials in Medicine 3:274–88. doi: 10.1016/j.smaim.2022.03.001.
  • Rashid H-O, Yadav RK, Kim H-R, Chae H-J. (2015). ER stress: autophagy induction, inhibition and selection. Autophagy 11:1956–77. doi: 10.1080/15548627.2015.1091141.
  • Raturi A, Simmen T. (2013). Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). Biochim Biophys Acta 1833:213–24. doi: 10.1016/j.bbamcr.2012.04.013.
  • Read A, Schröder M. (2021). The unfolded protein response: an overview. Biology (Basel) 10:384. doi: 10.3390/biology10050384.
  • Rissanou AN, Ouranidis A, Karatasos K. (2020). Complexation of single stranded RNA with an ionizable lipid: an all-atom molecular dynamics simulation study. Soft Matter 16:6993–7005. doi: 10.1039/d0sm00736f.
  • Rizzuto R, Marchi S, Bonora M, et al. (2009). Ca2+ transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta 1787:1342–51. doi: 10.1016/j.bbabio.2009.03.015.
  • Rovira-Llopis S, Bañuls C, Diaz-Morales N, et al. (2017). Mitochondrial dynamics in type 2 diabetes: pathophysiological implications. Redox Biol 11:637–45. doi: 10.1016/j.redox.2017.01.013.
  • Saengruengrit C, Ritprajak P, Wanichwecharungruang S, et al. (2018). The combined magnetic field and iron oxide-PLGA composite particles: effective protein antigen delivery and immune stimulation in dendritic cells. J Colloid Interface Sci 520:101–11. doi: 10.1016/j.jcis.2018.03.008.
  • Sakellari GI, Zafeiri I, Batchelor H, Spyropoulos F. (2021). Formulation design, production and characterisation of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the encapsulation of a model hydrophobic active. Food Hydrocoll Health 1:None. doi: 10.1016/j.fhfh.2021.100024.
  • Samhadaneh DM, Alqarni KA, Smart A, et al. (2019). Gold nanourchins induce cellular stress, impair proteostasis and damage RNA. Nanomedicine 22:102083. doi: 10.1016/j.nano.2019.102083.
  • Sanyal J, Ahmed SS, Ng HKT, et al. (2016). Metallomic Biomarkers in Cerebrospinal fluid and Serum in patients with Parkinson’s disease in Indian population. Sci Rep 6:35097. doi: 10.1038/srep35097.
  • Sathyaraj WV, Prabakaran L, Bhoopathy J, et al. (2023). Therapeutic Efficacy of Polymeric Biomaterials in Treating Diabetic Wounds—An Upcoming Wound Healing Technology. Polymers (Basel) 15:1205. doi: 10.3390/polym15051205.
  • Scott E, Garnham R, Cheung K, et al. (2022). Pro-survival factor EDEM3 confers therapy resistance in prostate cancer. Int J Mol Sci 23:8184. doi: 10.3390/ijms23158184.
  • Senapati S, Mahanta AK, Kumar S, Maiti P. (2018). Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 3:7. doi: 10.1038/s41392-017-0004-3.
  • Senft D, Ronai ZA. (2015). UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci 40:141–8. doi: 10.1016/j.tibs.2015.01.002.
  • Seo H, Jeon L, Kwon J, Lee H. (2023). High-Precision Synthesis of RNA-Loaded Lipid Nanoparticles for Biomedical Applications. Adv Healthc Mater 12:e2203033. doi: 10.1002/adhm.202203033.
  • Shen X, Zhang K, Kaufman RJ. (2004). The unfolded protein response—a stress signaling pathway of the endoplasmic reticulum. J Chem Neuroanat 28:79–92. doi: 10.1016/j.jchemneu.2004.02.006.
  • Sheth V, Wang L, Bhattacharya R, et al. (2021). Strategies for delivering nanoparticles across tumor blood vessels. Adv Funct Mater 31:2007363. doi: 10.1002/adfm.202007363.
  • Shi Y, Liu Y, Wang S, et al. (2022). Endoplasmic reticulum-targeted inhibition of CYP2E1 with vitamin E nanoemulsions alleviates hepatocyte oxidative stress and reverses alcoholic liver disease. Biomaterials 288:121720. doi: 10.1016/j.biomaterials.2022.121720.
  • Shi Y, Wang S, Wu J, et al. (2021). Pharmaceutical strategies for endoplasmic reticulum-targeting and their prospects of application. J Control Release 329:337–52. doi: 10.1016/j.jconrel.2020.11.054.
  • Shimodaira Y, Takahashi S, Kinouchi Y, et al. (2014). Modulation of endoplasmic reticulum (ER) stress-induced autophagy by C/EBP homologous protein (CHOP) and inositol-requiring enzyme 1α (IRE1α) in human colon cancer cells. Biochem Biophys Res Commun 445:524–33. doi: 10.1016/j.bbrc.2014.02.054.
  • Siegelin MD. (2012). Utilization of the cellular stress response to sensitize cancer cells to TRAIL-mediated apoptosis. Expert Opin Ther Targets 16:801–17. doi: 10.1517/14728222.2012.703655.
  • Simard J-C, Vallieres F, de Liz R, et al. (2015). Silver nanoparticles induce degradation of the endoplasmic reticulum stress sensor activating transcription factor-6 leading to activation of the NLRP-3 inflammasome. J Biol Chem 290:5926–39. doi: 10.1074/jbc.M114.610899.
  • Singh M, Loftus T, Webb E, Benencia F. (2016). Minireview: regulatory T cells and ovarian cancer. Immunol Invest 45:712–20. doi: 10.1080/08820139.2016.1186689.
  • Singh R, Kaur N, Dhingra N, Kaur T. (2023). Protein misfolding, ER stress and chaperones: an approach to develop chaperone-based therapeutics for Alzheimer’s disease. Int J Neurosci 133:714–34. doi: 10.1080/00207454.2021.1968859.
  • Song Q, Chen Y, Wang J, et al. (2020). ER stress-induced upregulation of NNMT contributes to alcohol-related fatty liver development. J Hepatol 73:783–93. doi: 10.1016/j.jhep.2020.04.038.
  • Song X, Qiao L, Dou X, et al. (2023). Selenium nanoparticles alleviate deoxynivalenol-induced intestinal epithelial barrier dysfunction by regulating endoplasmic reticulum stress in IPEC-J2 cells. Toxicology 494:153593. doi: 10.1016/j.tox.2023.153593.
  • Su Y, Li F. (2016). Endoplasmic reticulum stress in brain ischemia. Int J Neurosci 126:681–91. doi: 10.3109/00207454.2015.1059836.
  • Taiariol L, Chaix C, Farre C, Moreau E. (2022). Click and bioorthogonal chemistry: the future of active targeting of nanoparticles for nanomedicines? Chem Rev 122:340–84. doi: 10.1021/acs.chemrev.1c00484.
  • Tan SY, Wong JLM, Sim YJ, et al. (2019). Type 1 and 2 diabetes mellitus: a review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr 13:364–72. doi: 10.1016/j.dsx.2018.10.008.
  • Tang F, Wu C, Zhai Z, et al. (2022). Recent progress of small-molecule fluorescent probes for endoplasmic reticulum imaging in biological systems. Analyst 147:987–1005. doi: 10.1039/d1an02290c.
  • Thüne K, Schmitz M, Villar-Piqué A, et al. (2019). The cellular prion protein and its derived fragments in human prion diseases and their role as potential biomarkers. Expert Rev Mol Diagn 19:1007–18. doi: 10.1080/14737159.2019.1667231.
  • Truitt ML, Ruggero D. (2016). New frontiers in translational control of the cancer genome. Nat Rev Cancer 16:288–304. doi: 10.1038/nrc.2016.27.
  • Tsou YH, Zhang XQ, Zhu H, et al. (2017). Drug delivery to the brain across the blood–brain barrier using nanomaterials. Small 13:1701921. doi: 10.1002/smll.201701921.
  • van Vliet AR, Verfaillie T, Agostinis P. (2014). New functions of mitochondria associated membranes in cellular signaling. Biochim Biophys Acta 1843:2253–62. doi: 10.1016/j.bbamcr.2014.03.009.
  • Verfaillie T, Rubio N, Garg A, et al. (2012). PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ 19:1880–91. doi: 10.1038/cdd.2012.74.
  • Vetere A, Parekh VS, Modell AE, et al. (2022). Chemical Approaches for Beta-cell Biology.
  • Viegas C, Seck F, Fonte P. (2022). An insight on lipid nanoparticles for therapeutic proteins delivery. J Drug Delivery Sci Technol 77:103839. doi: 10.1016/j.jddst.2022.103839.
  • Vilella A, Ruozi B, Belletti D, et al. (2015). Endocytosis of nanomedicines: the case of glycopeptide engineered PLGA nanoparticles. Pharmaceutics 7:74–89. doi: 10.3390/pharmaceutics7020074.
  • Voeltz GK, Rolls MM, Rapoport TA. (2002). Structural organization of the endoplasmic reticulum. EMBO Rep 3:944–50. doi: 10.1093/embo-reports/kvf202.
  • Vrettou S, Wirth B. (2022). S-glutathionylation and S-nitrosylation in mitochondria: focus on homeostasis and neurodegenerative diseases. Int J Mol Sci 23:15849. doi: 10.3390/ijms232415849.
  • Wadgaonkar P, Chen F, editors. (2021). Connections between endoplasmic reticulum stress-associated unfolded protein response, mitochondria, and autophagy in arsenic-induced carcinogenesis. Seminars in cancer biology 76:258–266. doi: 10.1016/j.semcancer.2021.04.004.
  • Wang W, Zhang Y, Wang Z, et al. (2023). A native drug-free macromolecular therapeutic to trigger mutual reinforcing of endoplasmic reticulum stress and mitochondrial dysfunction for cancer treatment. ACS Nano 17:11023–38. doi: 10.1021/acsnano.3c03450.
  • Wechsler ME, Vela Ramirez JE, Peppas NA. (2019). 110th anniversary: nanoparticle mediated drug delivery for the treatment of Alzheimer’s disease: crossing the blood–brain barrier. Ind Eng Chem Res 58:15079–87. doi: 10.1021/acs.iecr.9b02196.
  • Wijesooriya CS, Nieszala M, Stafford A, et al. (2019). Coumarin-based fluorescent probes for selectively targeting and imaging the endoplasmic reticulum in mammalian cells. Photochem Photobiol 95:556–62. doi: 10.1111/php.12985.
  • Woll KA, Van Petegem F. (2022). Calcium-release channels: structure and function of IP3 receptors and ryanodine receptors. Physiol Rev 102:209–68. doi: 10.1152/physrev.00033.2020.
  • Wu J, Wang D, Zhou J, et al. (2023). Gambogenic acid induces apoptosis and autophagy through ROS-mediated endoplasmic reticulum stress via JNK pathway in prostate cancer cells. Phytother Res 37:310–28. doi: 10.1002/ptr.7614.
  • Xie Y, Wang M, Qian Y, et al. (2023). Novel PdPtCu Nanozymes for Reprogramming Tumor Microenvironment to Boost Immunotherapy Through Endoplasmic Reticulum Stress and Blocking IDO-Mediated Immune Escape. Small 19:e2303596. doi: 10.1002/smll.202303596.
  • Yang B, Shi J. (2020). Ascorbate tumor chemotherapy by an iron-engineered nanomedicine-catalyzed tumor-specific pro-oxidation. J Am Chem Soc 142:21775–85. doi: 10.1021/jacs.0c09984.
  • Yang L, Webster TJ. (2009). Nanotechnology controlled drug delivery for treating bone diseases. Expert Opin Drug Deliv 6:851–64. doi: 10.1517/17425240903044935.
  • Yang X, Zhuang J, Song W, et al. (2023). Mitochondria-associated endoplasmic reticulum membrane: overview and inextricable link with cancer. J Cell Mol Med 27:906–19. doi: 10.1111/jcmm.17696.
  • Yao X, Tu Y, Xu Y, et al. (2020). Endoplasmic reticulum stress confers 5-fluorouracil resistance in breast cancer cell via the GRP78/OCT4/lncRNA MIAT/AKT pathway. Am J Cancer Res 10:838.
  • Yao X, Tu Y, Xu Y, et al. (2020). Endoplasmic reticulum stress-induced exosomal miR-27a-3p promotes immune escape in breast cancer via regulating PD-L1 expression in macrophages. J Cell Mol Med 24:9560–73. doi: 10.1111/jcmm.15367.
  • Yi X, Zhao W, Li J, et al. (2017). Mn 3 O 4 nanoparticles cause endoplasmic reticulum stress-dependent toxicity to Saccharomyces cerevisiae. RSC Adv 7:46028–35. doi: 10.1039/C7RA07458A.
  • Ying H, Ruan Y, Zeng Z, et al. (2022). Iron oxide nanoparticles size-dependently activate mouse primary macrophages via oxidative stress and endoplasmic reticulum stress. Int Immunopharmacol 105:108533. doi: 10.1016/j.intimp.2022.108533.
  • Yoo YJ, Lee CH, Park SH, Lim YT. (2022). Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. J Control Release 343:564–83. doi: 10.1016/j.jconrel.2022.01.047.
  • Yousif LF, Stewart KM, Kelley SO. (2009). Targeting mitochondria with organelle-specific compounds: strategies and applications. Chembiochem 10:1939–50. doi: 10.1002/cbic.200900185.
  • Yuan Y, Jiao P, Wang Z, et al. (2022). Endoplasmic reticulum stress promotes the release of exosomal PD-L1 from head and neck cancer cells and facilitates M2 macrophage polarization. Cell Commun Signal 20:12. doi: 10.1186/s12964-021-00810-2.
  • Yue L, Yang K, Lou X-Y, et al. (2020). Versatile roles of macrocycles in organic-inorganic hybrid materials for biomedical applications. Matter 3:1557–88. doi: 10.1016/j.matt.2020.09.019.
  • Zhang H, Fan J, Dong H, et al. (2013). Fluorene-derived two-photon fluorescent probes for specific and simultaneous bioimaging of endoplasmic reticulum and lysosomes: group-effect and localization. J Mater Chem B 1:5450–5. doi: 10.1039/c3tb20646g.
  • Zhang L, Cheng X, Xu S, et al. (2018). Curcumin induces endoplasmic reticulum stress-associated apoptosis in human papillary thyroid carcinoma BCPAP cells via disruption of intracellular calcium homeostasis. Medicine (Baltimore) 97:e11095. doi: 10.1097/MD.0000000000011095.
  • Zhang T, Liu Q, Gao W, et al. (2022). The multifaceted regulation of mitophagy by endogenous metabolites. Autophagy 18:1216–39. doi: 10.1080/15548627.2021.1975914.
  • Zhang T, Lu J, Yao Y, et al. (2023). MPA-capped CdTequantum dots induces endoplasmic reticulum stress-mediated autophagy and apoptosis through generation of reactive oxygen species in human liver normal cell and liver tumor cell. Environ Pollut 326:121397. doi: 10.1016/j.envpol.2023.121397.
  • Zhang X, Zhang H, Liang X, et al. (2016). Iron oxide nanoparticles induce autophagosome accumulation through multiple mechanisms: lysosome impairment, mitochondrial damage, and ER stress. Mol Pharm 13:2578–87. doi: 10.1021/acs.molpharmaceut.6b00405.
  • Zheng Y-Z, Cao Z-G, Hu X, Shao Z-M. (2014). The endoplasmic reticulum stress markers GRP78 and CHOP predict disease-free survival and responsiveness to chemotherapy in breast cancer. Breast Cancer Res Treat 145:349–58. doi: 10.1007/s10549-014-2967-x.
  • Zhou Z, Vázquez-González M, Willner I. (2021). Stimuli-responsive metal–organic framework nanoparticles for controlled drug delivery and medical applications. Chem Soc Rev 50:4541–63. doi: 10.1039/d0cs01030h.
  • Zhu X, Zhang J, Sun H, et al. (2014). Ubiquitination of inositol-requiring enzyme 1 (IRE1) by the E3 ligase CHIP mediates the IRE1/TRAF2/JNK pathway. J Biol Chem 289:30567–77. doi: 10.1074/jbc.M114.562868.
  • Zhu Y, Xie M, Meng Z, et al. (2019). Knockdown of TM9SF4 boosts ER stress to trigger cell death of chemoresistant breast cancer cells. Oncogene 38:5778–91. doi: 10.1038/s41388-019-0846-y.
  • Zhu Z, Wang Q, Liao H, et al. (2021). Trapping endoplasmic reticulum with amphiphilic AIE-active sensor via specific interaction of ATP-sensitive potassium (KATP). Natl Sci Rev 8:nwaa198. doi: 10.1093/nsr/nwaa198.
  • Zhuang Z, Dai J, Yu M, et al. (2020). Type I photosensitizers based on phosphindole oxide for photodynamic therapy: apoptosis and autophagy induced by endoplasmic reticulum stress. Chem Sci 11:3405–17. doi: 10.1039/d0sc00785d.