1,454
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Lipidization as a tool toward peptide therapeutics

, , &
Article: 2284685 | Received 06 Aug 2023, Accepted 12 Nov 2023, Published online: 27 Nov 2023

References

  • Abbott NJ, Patabendige AAK, Dolman DEM, et al. (2010). Structure and function of the blood–brain barrier. Neurobiol Dis 37:1–16. doi: 10.1016/j.nbd.2009.07.030.
  • Ahmadpour S, Hosseinimehr SJ. (2018). PASylation as a powerful technology for improving the pharmacokinetic properties of biopharmaceuticals. Curr Drug Deliv 15:331–41. doi: 10.2174/1567201814666171120122352.
  • Ahrens VM, Bellmann-Sickert K, Beck-Sickinger AG. (2012). Peptides and peptide conjugates: therapeutics on the upward path. Future Med Chem 4:1567–86. doi: 10.4155/fmc.12.76.
  • Alhassan AM, Abdullahi MI, Uba A, Umar A. (2014). Prenylation of aromatic secondary metabolites: a new frontier for development of novel drugs. Trop J Pharm Res 13:307–14. doi: 10.4314/tjpr.v13i2.22.
  • Anderson PM, Tomaras M, Mcconnell K. (2010). Mifamurtide in osteosarcoma–a practical review. Drugs Today (Barc) 46:327–37. doi: 10.1358/dot.2010.46.5.1500076.
  • Astrup A, Rössner S, VAN Gaal L, et al. (2009). Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 374:1606–16. doi: 10.1016/S0140-6736(09)61375-1.
  • Athanasiadou KI, Paschou SA, Stamatopoulos T, et al. (2022). Safety and efficacy of insulin detemir versus NPH in the treatment of diabetes during pregnancy: systematic review and meta-analysis of randomized controlled trials. Diabetes Res Clin Pract 190:110020. doi: 10.1016/j.diabres.2022.110020.
  • Bando H, Iwatsuki N, Ogawa T, Sakamoto K. (2022). Investigation for daily profile of blood glucose by the administration of canagliflozin and xultophy (Ideglira). Int J Endocrinol Diabetes 5:129.
  • Battelino T, Rasmussen MH, DE Schepper J, GROUP, T. N.-S, et al. (2017). Somapacitan, a once-weekly reversible albumin-binding GH derivative, in children with GH deficiency: a randomized dose-escalation trial. Clin Endocrinol (Oxf) 87:350–8. & doi: 10.1111/cen.13409.
  • Bednarek MA, Feighner SD, Pong SS, et al. (2000). Structure-function studies on the new growth hormone-releasing peptide, ghrelin: minimal sequence of ghrelin necessary for activation of growth hormone secretagogue receptor 1a. J Med Chem 43:4370–6. doi: 10.1021/jm0001727.
  • Bennett CL, Spiegel DM, Macdougall IC, et al. (2012). A review of safety, efficacy, and utilization of erythropoietin, darbepoetin, and peginesatide for patients with cancer or chronic kidney disease: a report from the Southern Network on Adverse Reactions (SONAR). Seminars in thrombosis and hemostasis, 2012. Semin Thromb Hemost 38:783–96. doi: 10.1055/s-0032-1328884.
  • Bergmann NC, Davies MJ, Lingvay I, Knop FK. (2023). Semaglutide for the treatment of overweight and obesity: a review. Diabetes Obes Metab 25:18–35. doi: 10.1111/dom.14863.
  • Binder U, Skerra A. (2017). PASylation®: a versatile technology to extend drug delivery. Curr Opin Colloid Interf Sci 31:10–7. doi: 10.1016/j.cocis.2017.06.004.
  • Biron E, Chatterjee J, Ovadia O, et al. (2008). Improving oral bioavailability of peptides by multiple N-methylation: somatostatin analogues. Angew Chem Int Ed Engl 47:2595–9. doi: 10.1002/anie.200705797.
  • Bolze F, Morath V, Bast A, et al. (2016). Long-acting PASylated leptin ameliorates obesity by promoting satiety and preventing hypometabolism in leptin-deficient Lepob/ob mice. Endocrinology 157:233–44. doi: 10.1210/en.2015-1519.
  • Botti G, Dalpiaz A, Pavan B. (2021). Targeting systems to the brain obtained by merging prodrugs, nanoparticles, and nasal administration. Pharmaceutics 13:1144. doi: 10.3390/pharmaceutics13081144.
  • Carmona G, Rodriguez A, Juarez D, et al. (2013). Improved protease stability of the antimicrobial peptide Pin2 substituted with D-amino acids. Protein J 32:456–66. doi: 10.1007/s10930-013-9505-2.
  • Cohen DJ, Loertscher R, Rubin MF, et al. (1984). Cyclosporine: a new immunosuppressive agent for organ transplantation. Ann Intern Med 101:667–82. doi: 10.7326/0003-4819-101-5-667.
  • Creanga A, Glenn TD, Mann RK, et al. (2012). Scube/You activity mediates release of dually lipid-modified Hedgehog signal in soluble form. Genes Dev 26:1312–25. doi: 10.1101/gad.191866.112.
  • DE Prins A, VAN Eeckhaut A, Smolders I, et al. (2020). Neuromedin U: an overview on peptidomimetic ligands and structural analogs. Curr Med Chem 27:6744–68. doi: 10.2174/0929867326666190916143028.
  • Drucker DJ, Dritselis A, Kirkpatrick P. (2010). Liraglutide. Nat Rev Drug Discov 9:267–8. doi: 10.1038/nrd3148.
  • DRUGBANK. (2019). Polymyxin B [Online]. DrugBank. Available at: https://go.drugbank.com/drugs/DB00781 [accessed].
  • DRUGS.COM. (2022). DDAVP Prescribing Information [Online]. Drugs.com. Available at: https://www.drugs.com/pro/ddavp.html#s-34090-1 [accessed 2008].
  • Eliaschewitz FG, Canani LH. (2021). Advances in GLP-1 treatment: focus on oral semaglutide. Diabetol Metab Syndr 13:99. doi: 10.1186/s13098-021-00713-9.
  • Erak M, Bellmann-Sickert K, Els-Heindl S, Beck-Sickinger AG. (2018). Peptide chemistry toolbox–transforming natural peptides into peptide therapeutics. Bioorg Med Chem 26:2759–65. doi: 10.1016/j.bmc.2018.01.012.
  • Falutz J, Mamputu J-C, Potvin D, et al. (2010). Effects of tesamorelin (TH9507), a growth hormone-releasing factor analog, in human immunodeficiency virus-infected patients with excess abdominal fat: a pooled analysis of two multicenter, double-blind placebo-controlled phase 3 trials with safety extension data. J Clin Endocrinol Metab 95:4291–304. doi: 10.1210/jc.2010-0490.
  • FDA. (2003). Cubicin (Daptomycin) Injection [Online]. FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/21-572_Cubicin.cfm [accessed Sept 2003].
  • FDA. (2020). FDA approves weekly therapy for adults growth hormone deficiency [Online]. FDA. Available at: https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-weekly-therapy-adult-growth-hormone-deficiency [accessed 09/01 2020].
  • FDA. (2021). FDA Approves New Drug Treatment for Chronic Weight Management, First SInce 2014 [Online]. FDA. Available at: https://www.fda.gov/news-events/press-announcements/fda-approves-new-drug-treatment-chronic-weight-management-first-2014 [Accessed 06/04/2021 2021].
  • Frampton JE. (2010). Mifamurtide: a review of its use in the treatment of osteosarcoma. Paediatr Drugs 12:141–53. doi: 10.2165/11204910-000000000-00000.
  • Frías JP, Davies MJ, Rosenstock J, et al. (2021). Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med 385:503–15. doi: 10.1056/NEJMoa2107519.
  • Garrahy A, Thompson CJ. (2020). Management of central diabetes insipidus. Best Pract Res Clin Endocrinol Metab 34:101385. doi: 10.1016/j.beem.2020.101385.
  • Garst EH, DAS T, Hang HC. (2021). Chemical approaches for investigating site-specific protein S-fatty acylation. Curr Opin Chem Biol 65:109–17. doi: 10.1016/j.cbpa.2021.06.004.
  • Gazdik M, O’Neill MT, Lopaticki S, et al. (2015). The effect of N-methylation on transition state mimetic inhibitors of the Plasmodium protease, plasmepsin V. Med Chem Commun 6:437–43. doi: 10.1039/C4MD00409D.
  • Gilon C, Halle D, Chorev M, et al. (1991). Backbone cyclization: a new method for conferring conformational constraint on peptides. Biopolymers: Original Res Biomol 31:745–50. doi: 10.1002/bip.360310619.
  • Goodwin D, Simerska P, Toth I. (2012). Peptides as therapeutics with enhanced bioactivity. Curr Med Chem 19:4451–61. doi: 10.2174/092986712803251548.
  • Green BR, White KL, Mcdougle DR, et al. (2010). Introduction of lipidization–cationization motifs affords systemically bioavailable neuropeptide Y and neurotensin analogs with anticonvulsant activities. J Pept Sci 16:486–95. doi: 10.1002/psc.1266.
  • Grunfeld C, Dritselis A, Kirkpatrick P. (2011). Tesamorelin. Nat Rev Drug Discov 10:95–6. doi: 10.1038/nrd3362.
  • Hanna CC, Kriegesmann J, Dowman LJ, et al. (2022). Chemical synthesis and semisynthesis of lipidated proteins. Angew Chem Int Ed Engl 61:e202111266. doi: 10.1002/anie.202111266.
  • Hannoush RN, Sun J. (2010). The chemical toolbox for monitoring protein fatty acylation and prenylation. Nat Chem Biol 6:498–506. doi: 10.1038/nchembio.388.
  • Harris JM, Chess RB. (2003). Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2:214–21. doi: 10.1038/nrd1033.
  • Harris JM, Martin NE, Modi M. (2001). Pegylation. Clin Pharmacokinet 40:539–51. doi: 10.2165/00003088-200140070-00005.
  • Havelund S, Plum A, Ribel U, et al. (2004). The mechanism of protraction of insulin detemir, a long-acting, acylated analog of human insulin. Pharm Res 21:1498–504. doi: 10.1023/b:pham.0000036926.54824.37.
  • Heidary M, Khosravi AD, Khoshnood S, et al. (2017). Daptomycin. J Antimicrob Chemother 73:1–11. doi: 10.1093/jac/dkx349.
  • Henikoff S, Henikoff JG. (1992). Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89:10915–9. doi: 10.1073/pnas.89.22.10915.
  • Hermansen K, Davies M. (2007). Does insulin detemir have a role in reducing risk of insulin-associated weight gain? Diabetes Obes Metab 9:209–17. doi: 10.1111/j.1463-1326.2006.00665.x.
  • Hermanson T, Bennett CL, Macdougall IC. (2016). Peginesatide for the treatment of anemia due to chronic kidney disease–an unfulfilled promise. Expert Opin Drug Saf 15:1421–6. doi: 10.1080/14740338.2016.1218467.
  • Holubová M, Blechová M, Kákonová A, et al. (2018). In vitro and in vivo characterization of novel stable peptidic ghrelin analogs: beneficial effects in the settings of lipopolysaccharide-induced anorexia in mice. J Pharmacol Exp Ther 366:422–32. doi: 10.1124/jpet.118.249086.
  • Holubová M, Hrubá L, Popelová A, et al. (2019). Liraglutide and a lipidized analog of prolactin-releasing peptide show neuroprotective effects in a mouse model of β-amyloid pathology. Neuropharmacology 144:377–87. doi: 10.1016/j.neuropharm.2018.11.002.
  • Home P, Kurtzhals P. (2006). Insulin detemir: from concept to clinical experience. Expert Opin Pharmacother 7:325–43. doi: 10.1517/14656566.7.3.325.
  • Hutchinson JA, Burholt S, Hamley IW, et al. (2018). The effect of lipidation on the self-assembly of the gut-derived peptide hormone PYY3–36. Bioconjug Chem 29:2296–308. doi: 10.1021/acs.bioconjchem.8b00286.
  • Chatterjee J, Gilon C, Hoffman A, Kessler H. (2008). N-methylation of peptides: a new perspective in medicinal chemistry. Acc Chem Res 41:1331–42. doi: 10.1021/ar8000603.
  • Chatterjee J, Rechenmacher F, Kessler H. (2013). N-methylation of peptides and proteins: an important element for modulating biological functions. Angew Chem Int Ed Engl 52:254–69. doi: 10.1002/anie.201205674.
  • Chatterjee S, Mayor S. (2001). The GPI-anchor and protein sorting. Cell Mol Life Sci 58:1969–87. doi: 10.1007/PL00000831.
  • Checco JW, Zhang G, Yuan W-D, et al. (2018). Molecular and physiological characterization of a receptor for D-amino acid-containing neuropeptides. ACS Chem Biol 13:1343–52. doi: 10.1021/acschembio.8b00167.
  • Chen S, Gfeller D, Buth SA, et al. (2013). Improving binding affinity and stability of peptide ligands by substituting glycines with d-amino acids. Chembiochem 14:1316–22. doi: 10.1002/cbic.201300228.
  • Christou GA, Katsiki N, Blundell J, et al. (2019). Semaglutide as a promising antiobesity drug. Obes Rev 20:805–15. doi: 10.1111/obr.12839.
  • Iepsen EW, Torekov SS, Holst JJ. (2015). Liraglutide for type 2 diabetes and obesity: a 2015 update. Expert Rev Cardiovasc Ther 13:753–67. doi: 10.1586/14779072.2015.1054810.
  • Ichimura Y, Kirisako T, Takao T, et al. (2000). A ubiquitin-like system mediates protein lipidation. Nature 408:488–92. doi: 10.1038/35044114.
  • Ikezawa H. (2002). Glycosylphosphatidylinositol (GPI)-anchored proteins. Biol Pharm Bull 25:409–17. doi: 10.1248/bpb.25.409.
  • Ingallinella P, Bianchi E, Ladwa NA, et al. (2009). Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency. Proc Natl Acad Sci USA 106:5801–6. doi: 10.1073/pnas.0901007106.
  • Jain A, Jain A, Gulbake A, et al. (2013). Peptide and protein delivery using new drug delivery systems. Critical Rev™ Therapeutic Drug Carrier Sys 30:293–329.
  • Janzen KM, Steuber TD, Nisly SA. (2016). GLP-1 agonists in type 1 diabetes mellitus. Ann Pharmacother 50:656–65. doi: 10.1177/1060028016651279.
  • Jarosinski MA, Dhayalan B, Chen YS, et al. (2021). Structural principles of insulin formulation and analog design: a century of innovation. Mol Metab 52:101325. doi: 10.1016/j.molmet.2021.101325.
  • Jayaprakash NG, Surolia A. (2017). Role of glycosylation in nucleating protein folding and stability. Biochem J 474:2333–47. doi: 10.1042/BCJ20170111.
  • Jevševar S, Kunstelj M, Porekar VG. (2010). PEGylation of therapeutic proteins. Biotechnol J 5:113–28. doi: 10.1002/biot.200900218.
  • Johannsson G, Gordon MB, Højby Rasmussen M, et al. (2020). Once-weekly somapacitan is effective and well tolerated in adults with GH deficiency: a randomized phase 3 trial. J Clin Endocrinol Metab 105:e1358-76–e1376. doi: 10.1210/clinem/dgaa049.
  • Kadir RA, Lee CA, Sabin CA, et al. (2002). DDAVP nasal spray for treatment of menorrhagia in women with inherited bleeding disorders: a randomized placebo-controlled crossover study. Haemophilia 8:787–93. doi: 10.1046/j.1365-2516.2002.00678.x.
  • Kalra S. (2013). Insulin degludec: a significant advancement in ultralong-acting basal insulin. Diabetes Ther 4:167–73. doi: 10.1007/s13300-013-0047-6.
  • Kalra S, Sahay R. (2020). A review on semaglutide: an oral glucagon-like peptide 1 receptor agonist in management of type 2 diabetes mellitus. Diabetes Ther 11:1965–82. doi: 10.1007/s13300-020-00894-y.
  • Karagiannis T, Avgerinos I, Liakos A, et al. (2022). Management of type 2 diabetes with the dual GIP/GLP-1 receptor agonist tirzepatide: a systematic review and meta-analysis. Diabetologia 65:1251–61. doi: 10.1007/s00125-022-05715-4.
  • Karanth L, Barua A, Kanagasabai S, Nair NS. (2019). Desmopressin acetate (DDAVP) for preventing and treating acute bleeds during pregnancy in women with congenital bleeding disorders. Cochrane Database Syst Rev 2:Cd009824. doi: 10.1002/14651858.CD009824.pub4.
  • Keating GM. (2013). Insulin degludec and insulin degludec/insulin aspart: a review of their use in the management of diabetes mellitus. Drugs 73:575–93. doi: 10.1007/s40265-013-0051-1.
  • Knudsen L. (2010). Liraglutide: the therapeutic promise from animal models. Int J Clin Pract Suppl 64:4–11. doi: 10.1111/j.1742-1241.2010.02499.x.
  • Knudsen LB, Nielsen PF, Huusfeldt PO, et al. (2000). Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J Med Chem 43:1664–9. doi: 10.1021/jm9909645.
  • Kojima M, Hosoda H, Date Y, et al. (1999). Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–60. doi: 10.1038/45230.
  • Kořínková L, Holubová M, Neprašová B, et al. (2020). Synergistic effect of leptin and lipidized PrRP on metabolic pathways in ob/ob mice. J Mol Endocrinol 64:77–90. doi: 10.1530/JME-19-0188.
  • Kowalczyk R, Harris PW, Williams GM, et al. (2017). Peptide lipidation–a synthetic strategy to afford peptide based therapeutics. Peptides and peptide-based biomaterials and their biomedical applications, 185–227.
  • Kuneš J, Pražienková V, Popelová A, et al. (2016). Prolactin-releasing peptide: a new tool for obesity treatment. J Endocrinol 230:R51–8. doi: 10.1530/JOE-16-0046.
  • LA Manna S, DI Natale C, Florio D, Marasco D. (2018). Peptides as therapeutic agents for inflammatory-related diseases. Int J Mol Sci 19:2714. doi: 10.3390/ijms19092714.
  • Lee WP, Lippe BM, LA Franchi SH, Kaplan SA. (1976). Vasopressin analog DDAVP in the treatment of diabetes insipidus. Am J Dis Child 130:166–9. doi: 10.1001/archpedi.1976.02120030056010.
  • Linderoth L, Kofoed J, Kodra JT, et al. (2021). GLP-1 receptor agonists for the treatment of type 2 diabetes and obesity. Successful Drug Discovery, 87–110.
  • Lu J, Xu H, Xia J, et al. (2020). D-and unnatural amino acid substituted antimicrobial peptides with improved proteolytic resistance and their proteolytic degradation characteristics. Front Microbiol 11:563030. doi: 10.3389/fmicb.2020.563030.
  • Mahalakshmi R, Balaram P, et al. (2006). The use of D-amino acids in peptide design. In: R. Konno, eds. D-amino acids: a new frontier in amino acid and protein research (1st edn). Hauppauge: Nova Science Publisher, 415–30.
  • Mahlapuu M, Björn C, Ekblom J. (2020). Antimicrobial peptides as therapeutic agents: opportunities and challenges. Crit Rev Biotechnol 40:978–92. doi: 10.1080/07388551.2020.1796576.
  • Maletínská L, Maixnerová J, Matyšková R, et al. (2008). Synergistic effect of CART (cocaine- and amphetamine-regulated transcript) peptide and cholecystokinin on food intake regulation in lean mice. BMC Neurosci 9:101. doi: 10.1186/1471-2202-9-101.
  • Maletínská L, Nagelová V, Tichá A, et al. (2015). Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int J Obes (Lond) 39:986–93. doi: 10.1038/ijo.2015.28.
  • Maletínská L, Pýchová M, Holubová M, et al. (2012). Characterization of new stable ghrelin analogs with prolonged orexigenic potency. J Pharmacol Exp Ther 340:781–6. doi: 10.1124/jpet.111.185371.
  • Markussen J, Havelund S, Kurtzhals P, et al. (1996). Soluble, fatty acid acylated insulins bind to albumin and show protracted action in pigs. Diabetologia 39:281–8. doi: 10.1007/BF00418343.
  • Marso SP, Mcguire DK, Zinman B, et al. (2017). Efficacy and safety of degludec versus glargine in type 2 diabetes. N Engl J Med 377:723–32. doi: 10.1056/NEJMoa1615692.
  • Mateo MG, Gutiérrez MDM, Domingo P. (2011). Tesamorelin for the treatment of excess abdominal fat in HIV-1-infected patients with lipodystrophy. Expert Rev Endocrinol Metab 6:21–30. doi: 10.1586/eem.10.83.
  • Mayor S, Riezman H. (2004). Sorting GPI-anchored proteins. Nat Rev Mol Cell Biol 5:110–20. doi: 10.1038/nrm1309.
  • Mazarguil H, Gouardères C, Tafani J-AM, et al. (2001). Structure-activity relationships of neuropeptide FF: role of C-terminal regions. Peptides 22:1471–8. doi: 10.1016/s0196-9781(01)00468-5.
  • Mcclements DJ. (2015). Encapsulation, protection, and release of hydrophilic active components: Potential and limitations of colloidal delivery systems. Adv Colloid Interface Sci 219:27–53. doi: 10.1016/j.cis.2015.02.002.
  • Mehta A, Marso SP, Neeland I. (2017). Liraglutide for weight management: a critical review of the evidence. Obes Sci Pract 3:3–14. doi: 10.1002/osp4.84.
  • Mejuch T, Waldmann H. (2016). Synthesis of lipidated proteins. Bioconjug Chem 27:1771–83. doi: 10.1021/acs.bioconjchem.6b00261.
  • Menacho-Melgar R, Decker JS, Hennigan JN, Lynch MD. (2019). A review of lipidation in the development of advanced protein and peptide therapeutics. J Control Release 295:1–12. doi: 10.1016/j.jconrel.2018.12.032.
  • Meyers PA. (2009). Muramyl tripeptide (mifamurtide) for the treatment of osteosarcoma. Expert Rev Anticancer Ther 9:1035–49. doi: 10.1586/era.09.69.
  • Mikulášková B, Maletínská L, Zicha J, Kuneš J. (2016). The role of food intake regulating peptides in cardiovascular regulation. Mol Cell Endocrinol 436:78–92. doi: 10.1016/j.mce.2016.07.021.
  • Mitchell JB, Smith J. (2003). D-amino acid residues in peptides and proteins. Proteins Struct Funct Bioinf 50:563–71. doi: 10.1002/prot.10320.
  • Moffatt JH, Harper M, Boyce JD. (2019). Mechanisms of polymyxin resistance. Polymyxin antibiotics: From laboratory bench to bedside, 55–71.
  • Moharir A, Peck SH, Budden T, Lee SY. (2013). The role of N-glycosylation in folding, trafficking, and functionality of lysosomal protein CLN5. PLoS One 8:e74299. doi: 10.1371/journal.pone.0074299.
  • Molhoek EM, VAN Dijk A, Veldhuizen EJ, et al. (2011). Improved proteolytic stability of chicken cathelicidin-2 derived peptides by D-amino acid substitutions and cyclization. Peptides 32:875–80. doi: 10.1016/j.peptides.2011.02.017.
  • Moll G, Kuipers A, DE Vries L, et al. (2009). A biological stabilization technology for peptide drugs: enzymatic introduction of thioether-bridges. Drug Discovery Today: Technol 6:e13–e18. doi: 10.1016/j.ddtec.2009.03.001.
  • Morozov VG, Khavinson VK. (1997). Natural and synthetic thymic peptides as therapeutics for immune dysfunction. Int J Immunopharmacol 19:501–5. doi: 10.1016/s0192-0561(97)00058-1.
  • Morrow T, Felcone LH. (2004). Defining the difference: what makes biologics unique. Biotechnol Healthc 1:24–9.
  • Müller TD, Nogueiras R, Andermann ML, et al. (2015). Ghrelin. Mol Metab 4:437–60. doi: 10.1016/j.molmet.2015.03.005.
  • Ng SYA, Wilding JPH. (2014). Liraglutide in the treatment of obesity. Expert Opin Biol Ther 14:1215–24. doi: 10.1517/14712598.2014.925870.
  • NOVONORDISK. (2020). FDA approves Saxenda® for the treatment of obesity in adolescents aged. 12–7. [Online]. Novo Nordisk. Available at: https://www.novonordisk-us.com/media/news-archive/news-details.html?id=39225
  • Ohtsubo K, Marth JD. (2006). Glycosylation in cellular mechanisms of health and disease. Cell 126:855–67. doi: 10.1016/j.cell.2006.08.019.
  • Pardridge WM. (1992). Recent developments in peptide drug delivery to the brain. Pharmacol Toxicol 71:3–10. doi: 10.1111/j.1600-0773.1992.tb00512.x.
  • Pavan B, Dalpiaz A. (2011). Prodrugs and endogenous transporters: are they suitable tools for drug targeting into the central nervous system? Curr Pharm Des 17:3560–76. doi: 10.2174/138161211798194486.
  • Peng T, Thinon E, Hang HC. (2016). Proteomic analysis of fatty-acylated proteins. Curr Opin Chem Biol 30:77–86. doi: 10.1016/j.cbpa.2015.11.008.
  • Popelová A, Kákonová A, Hrubá L, et al. (2018). Potential neuroprotective and anti-apoptotic properties of a long-lasting stable analog of ghrelin: an in vitro study using SH-SY5Y cells. Physiol Res 67:339–46. doi: 10.33549/physiolres.933761.
  • Pražienková V, Holubová M, Pelantová H, et al. (2017). Impact of novel palmitoylated prolactin-releasing peptide analogs on metabolic changes in mice with diet-induced obesity. PLoS One 12:e0183449. doi: 10.1371/journal.pone.0183449.
  • Pražienková V, Popelová A, Kuneš J, Maletínská L. (2019). Prolactin-releasing peptide: physiological and pharmacological properties. Int J Mol Sci 20:5297. doi: 10.3390/ijms20215297.
  • Purkayastha A, Kang TJ. (2019). Stabilization of proteins by covalent cyclization. Biotechnol Bioproc E 24:702–12. doi: 10.1007/s12257-019-0363-4.
  • Qvit N, Rubin SJ, Urban TJ, et al. (2017). Peptidomimetic therapeutics: scientific approaches and opportunities. Drug Discov Today 22:454–62. doi: 10.1016/j.drudis.2016.11.003.
  • Räder AF, Reichart F, Weinmüller M, Kessler H. (2018). Improving oral bioavailability of cyclic peptides by N-methylation. Bioorg Med Chem 26:2766–73. doi: 10.1016/j.bmc.2017.08.031.
  • Reily C, Stewart TJ, Renfrow MB, Novak J. (2019). Glycosylation in health and disease. Nat Rev Nephrol 15:346–66. doi: 10.1038/s41581-019-0129-4.
  • Resh MD. (2016). Fatty acylation of proteins: the long and the short of it. Prog Lipid Res 63:120–31. doi: 10.1016/j.plipres.2016.05.002.
  • Roberts MJ, Bentley MD, Harris JM. (2002). Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54:459–76. doi: 10.1016/s0169-409x(02)00022-4.
  • Rodbard HW, Buse JB, Woo V, et al. (2016). Benefits of combination of insulin degludec and liraglutide are independent of baseline glycated haemoglobin level and duration of type 2 diabetes. Diabetes Obes Metab 18:40–8. doi: 10.1111/dom.12574.
  • Santos JHPM, Torres-Obreque KM, Meneguetti GP, et al. (2018). Protein PEGylation for the design of biobetters: from reaction to purification processes. Braz J Pharm Sci 54:e01009. doi: 10.1590/s2175-97902018000001009.
  • Sävendahl L, Battelino T, Brod M, et al. (2020). Once-weekly somapacitan vs daily GH in children with GH deficiency: results from a randomized phase 2 trial. J Clin Endocrinol Metab 105:e1847–e1861. doi: 10.1210/clinem/dgz310.
  • Sharma A, Kumar A, Abdel Monaim SA, et al. (2018). N-methylation in amino acids and peptides: scope and limitations. Biopolymers 109:e23110. doi: 10.1002/bip.23110.
  • Scheen A, Mathieu C. (2018). Basal insulin degludec-liraglutide fixed ratio combination (Xultophy®). Rev Med Liege 73:526–32.
  • Scheen AJ. (2020). Oral semaglutide in Japanese versus non-Japanese patients with type 2 diabetes. Lancet Diabetes Endocrinol 8:350–2. doi: 10.1016/S2213-8587(20)30079-6.
  • Sinclair AM, Elliott S. (2005). Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94:1626–35. doi: 10.1002/jps.20319.
  • Solá RJ, Griebenow K. (2010). Glycosylation of therapeutic proteins. BioDrugs 24:9–21. doi: 10.2165/11530550-000000000-00000.
  • Spiro RG. (2002). Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R–56R. doi: 10.1093/glycob/12.4.43r.
  • Stanley TL, Fourman LT, Feldpausch MN, et al. (2019). Effects of tesamorelin on non-alcoholic fatty liver disease in HIV: a randomised, double-blind, multicentre trial. Lancet HIV 6:e821–e830. doi: 10.1016/S2352-3018(19)30338-8.
  • Steensgaard DB, Schluckebier G, Strauss HM, et al. (2013). Ligand-controlled assembly of hexamers, dihexamers, and linear multihexamer structures by the engineered acylated insulin degludec. Biochemistry 52:295–309. doi: 10.1021/bi3008609.
  • Steyn L. (2022). Xultophy. SA Pharmaceutical J 89:36–9.
  • Syed YY. (2022). Tirzepatide: first approval. Drugs 82:1213–20. doi: 10.1007/s40265-022-01746-8.
  • Tan TM-M. (2023). Co-agonist therapeutics come of age for obesity. Nat Rev Endocrinol 19:66–7. doi: 10.1038/s41574-022-00788-y.
  • Taylor SD, Palmer M. (2016). The action mechanism of daptomycin. Bioorg Med Chem 24:6253–68. doi: 10.1016/j.bmc.2016.05.052.
  • Tedesco D, Haragsim L. (2012). Cyclosporine: a review. J Transplant 2012:230386–7. doi: 10.1155/2012/230386.
  • Tornesello AL, Tagliamonte M, Tornesello ML, et al. (2020). Nanoparticles to improve the efficacy of peptide-based cancer vaccines. Cancers (Basel) 12:1049. doi: 10.3390/cancers12041049.
  • Toutain P-L, Bousquet MA. (2004). Bioavailability and its assessment. J Vet Pharmacol Ther 27:455–66. doi: 10.1111/j.1365-2885.2004.00604.x.
  • Tran H, Aihara E, Mohammed FA, et al. (2023). In vivo mechanism of action of sodium caprate for improving the intestinal absorption of a GLP1/GIP coagonist peptide. Mol Pharm 20:929–41. doi: 10.1021/acs.molpharmaceut.2c00443.
  • Traynor K. (2015). Insulin degludec products approved for diabetes. Am J Health Syst Pharm 72:1834. doi: 10.2146/news150070.
  • Trier S, Linderoth L, Bjerregaard S, et al. (2015). Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement. Eur J Pharm Biopharm 96:329–337. doi: 10.1016/j.ejpb.2015.09.001.
  • Vávra I, Machová A, Holecek V, et al. (1968). Effect of a synthetic analogue of vasopressin in animals and in patients with diabetes insipidus. Lancet 1:948–952. doi: 10.1016/s0140-6736(68)90904-5.
  • Veronese FM. (2001). Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22:405–417. doi: 10.1016/s0142-9612(00)00193-9.
  • Veronese FM, Mero A. (2008). The impact of PEGylation on biological therapies. BioDrugs 22:315–329. doi: 10.2165/00063030-200822050-00004.
  • Veronese FM, Pasut G. (2005). PEGylation, successful approach to drug delivery. Drug Discov Today 10:1451–1458. doi: 10.1016/S1359-6446(05)03575-0.
  • Walsh CT, Garneau-Tsodikova S, GattoJrGJ. (2005). Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 44:7342–7372. doi: 10.1002/anie.200501023.
  • Wang J, Chow D, Heiati H, Shen W-C. (2003). Reversible lipidization for the oral delivery of salmon calcitonin. J Control Release 88:369–380. doi: 10.1016/s0168-3659(03)00008-7.
  • Wang J, Wu D, Shen W-C. (2002). Structure-activity relationship of reversibly lipidized peptides: studies of fatty acid-desmopressin conjugates. Pharm Res 19:609–614. doi: 10.1023/a:1015397811161.
  • Wang M, Casey PJ. (2016). Protein prenylation: unique fats make their mark on biology. Nat Rev Mol Cell Biol 17:110–122. doi: 10.1038/nrm.2015.11.
  • Ward BP, Ottaway NL, Perez-Tilve D, et al. (2013). Peptide lipidation stabilizes structure to enhance biological function. Mol Metab 2:468–479. doi: 10.1016/j.molmet.2013.08.008.
  • Werle M, Bernkop-Schnürch A. (2006). Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids 30:351–67. doi: 10.1007/s00726-005-0289-3.
  • Xu M, Kontinen VK, Panula P, Kalso E. (1999). Effects of (1DMe)NPYF, a synthetic neuropeptide FF analogue, in different pain models. Peptides 20:1071–1077. doi: 10.1016/s0196-9781(99)00100-x.
  • Yadav D, Dewangan HK. (2021). PEGYLATION: an important approach for novel drug delivery system. J Biomater Sci Polym Ed 32:266–280. doi: 10.1080/09205063.2020.1825304.
  • Yadav SC, Kumari A, Yadav R. (2011). Development of peptide and protein nanotherapeutics by nanoencapsulation and nanobioconjugation. Peptides 32:173–187. doi: 10.1016/j.peptides.2010.10.003.
  • Zavascki AP, Goldani LZ, Li J, Nation RL. (2007). Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother 60:1206–1215. doi: 10.1093/jac/dkm357.
  • Zemenova J, Sykora D, Adamkova H, et al. (2017). Novel approach to determine ghrelin analogs by liquid chromatography with mass spectrometry using a monolithic column. J Sep Sci 40:1032–1039. doi: 10.1002/jssc.201601141.
  • Zemenová J, Sýkora D, Freislebenová A, Maletínská L. (2017). LC–MS/MS analysis of lipidized analogs of prolactin-releasing peptide utilizing a monolithic column and simple sample preparation. Bioanalysis 9:1319–1328. doi: 10.4155/bio-2017-0125.
  • Zhang FL, Casey PJ. (1996). Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269. doi: 10.1146/annurev.bi.65.070196.001325.
  • Zhang L, Bulaj G. (2012). Converting peptides into drug leads by lipidation. Curr Med Chem 19:1602–1618. doi: 10.2174/092986712799945003.
  • Zhang L, Lee HK, Pruess TH, et al. (2009). Synthesis and applications of polyamine amino acid residues: improving the bioactivity of an analgesic neuropeptide, neurotensin. J Med Chem 52:1514–7. doi: 10.1021/jm801481y.
  • Zhang Q, Li S, Wu W, et al. (2023). PASylation improves pharmacokinetic of liposomes and attenuates anti-PEG IgM production: an alternative to PEGylation. Nanomedicine 47:102622. doi: 10.1016/j.nano.2022.102622.
  • Zhang R-Y, Thapa P, Espiritu MJ, et al. (2018). From nature to creation: going around in circles, the art of peptide cyclization. Bioorg Med Chem 26:1135–1150. doi: 10.1016/j.bmc.2017.11.017.
  • Zhang Y, Liu, J, Yao J, Ji, et al. (2014). Obesity: pathophysiology and intervention. Nutrients 6:5153–5183. doi: 10.3390/nu6115153.
  • Zhu S, Guo Z. (2017). Chemical synthesis of GPI glycan–peptide conjugates by traceless Staudinger ligation. Org Lett 19:3063–3066. doi: 10.1021/acs.orglett.7b01132.
  • Zvonova EA, Ershov AV, Ershova OA, et al. (2017). PASylation technology improves recombinant interferon-β1b solubility, stability, and biological activity. Appl Microbiol Biotechnol 101:1975–1987. doi: 10.1007/s00253-016-7944-3.