919
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Platinum-based drugs and hydrogel: a promising anti-tumor combination

, , &
Article: 2287966 | Received 14 Jun 2023, Accepted 04 Oct 2023, Published online: 11 Dec 2023

References

  • Abdel-Bar HM, Abdel-Reheem AY, Osman R, et al. (2014). Defining cisplatin incorporation properties in thermosensitive injectable biodegradable hydrogel for sustained delivery and enhanced cytotoxicity. Int J Pharm 477:1–18. doi:10.1016/j.ijpharm.2014.11.005.
  • Abdel-Bar HM, Osman R, Abdel-Reheem AY, et al. (2016). Tunable biodegradable nanocomposite hydrogel for improved cisplatin efficacy on HCT-116 colorectal cancer cells and decreased toxicity in rats. Biomacromolecules 17:407–14. doi:10.1021/acs.biomac.5b01206.
  • Abuzar SM, Ahn J-H, Park KS, et al. (2019). Pharmacokinetic profile and anti-adhesive effect of oxaliplatin-PLGA microparticle-loaded hydrogels in rats for colorectal cancer treatment. Pharmaceutics 11:392. doi:10.3390/pharmaceutics11080392.
  • Alamzadeh Z, Beik J, Mirrahimi M, et al. (2020). Gold nanoparticles promote a multimodal synergistic cancer therapy strategy by co-delivery of thermo-chemo-radio therapy. Eur J Pharm Sci 145:105235. doi:10.1016/j.ejps.2020.105235.
  • Anirudhan TS, Mohan M, Rajeev MR. (2022). Modified chitosan-hyaluronic acid based hydrogel for the pH-responsive Co-delivery of cisplatin and doxorubicin. Int J Biol Macromol 201:378–88. doi:10.1016/j.ijbiomac.2022.01.022.
  • Barkat K, Ahmad M, Minhas MU, et al. (2020). Chondroitin sulfate-based smart hydrogels for targeted delivery of oxaliplatin in colorectal cancer: preparation, characterization and toxicity evaluation. Polym Bull 77:6271–97. doi:10.1007/s00289-019-03062-w.
  • Becker JP, Weiss J, Theile D. (2014). Cisplatin, oxaliplatin, and carboplatin unequally inhibit in vitro mRNA translation. Toxicol Lett 225:43–7. doi:10.1016/j.toxlet.2013.11.015.
  • Bruno PM, Liu Y, Park GY, et al. (2017). A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nat Med 23:461–71. doi:10.1038/nm.4291.
  • Carter T, Qi G, Wang W, et al. (2021). Self-assembling peptide solution accelerates hemostasis. Adv Wound Care (New Rochelle) 10:191–203. doi:10.1089/wound.2019.1109.
  • Chen T-Y, Tsai M-J, Chang L-C, et al. (2020). Co-delivery of cisplatin and gemcitabine via viscous nanoemulsion for potential synergistic intravesical chemotherapy. Pharmaceutics 12:949. doi:10.3390/pharmaceutics12100949.
  • Cheng C, Xia D, Zhang X, et al. (2015). Biocompatible poly(N-isopropylacrylamide)-g-carboxymethyl chitosan hydrogels as carriers for sustained release of cisplatin. J Mater Sci 50:4914–25. doi:10.1007/s10853-015-9036-7.
  • Cheng C, Zhang X, Meng Y, et al. (2017). Development of a dual drug-loaded hydrogel delivery system for enhanced cancer therapy: in situ formation, degradation and synergistic antitumor efficiency. J Mater Chem B 5:8487–97. doi:10.1039/c7tb02173a.
  • Cheng Y, He C, Xiao C, et al. (2012). Decisive role of hydrophobic side groups of polypeptides in thermosensitive gelation. Biomacromolecules 13:2053–9. doi:10.1021/bm3004308.
  • Chirani N, Yahia LH, Gritsch L, et al. (2015). History and applications of hydrogels. J Biomed Sci 04:13–23. doi:10.4172/2254-609X.100013.
  • Cong Z, Shi Y, Wang Y, et al. (2018). A novel controlled drug delivery system based on alginate hydrogel/chitosan micelle composites. Int J Biol Macromol 107:855–64. doi:10.1016/j.ijbiomac.2017.09.065.
  • Cui H, Webber MJ, Stupp SI. (2010). Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94:1–18. doi:10.1002/bip.21328.
  • Davoodi P, Ng WC, Srinivasan MP, et al. (2017). Codelivery of anti-cancer agents via double-walled polymeric microparticles/injectable hydrogel: a promising approach for treatment of triple negative breast cancer. Biotechnol Bioeng 114:2931–46. doi:10.1002/bit.26406.
  • Davoodi P, Ng WC, Yan WC, et al. (2016). Double-walled microparticles-embedded self-cross-linked, injectable, and antibacterial hydrogel for controlled and sustained release of chemotherapeutic agents. ACS Appl Mater Interf 8:22785–800. doi:10.1021/acsami.6b03041.
  • Deng J-Y, Liu Y, Hu Z-Y, et al. (2007). Synthesis and photophysical and electrochemical properties of new cyclometalated platinum complex containing oxadiazole ligand. J Cent South Univ Technol 14:344–7. doi:10.1007/s11771-007-0068-2.
  • Dilruba S, Kalayda GV. (2016). Platinum-based drugs: past, present and future. Cancer Chemother Pharmacol 77:1103–24. doi:10.1007/s00280-016-2976-z.
  • Dobrucka R, Romaniuk-Drapala A, Kaczmarek M. (2019). Evaluation of biological synthesized platinum nanoparticles using Ononidis radix extract on the cell lung carcinoma A549. Biomed Microdevices 21:75. doi:10.1007/s10544-019-0424-7.
  • Dong L, Chen H, Liu T, et al. (2021). Poly(l-cysteine) peptide amphiphile derivatives containing disulfide bonds: synthesis, self-assembly-induced β-sheet nanostructures, pH/reduction dual response, and drug release. Biomacromolecules 22:5374–81. doi:10.1021/acs.biomac.1c01324.
  • El-Kareh AW, Secomb TW. (2004). A theoretical model for intraperitoneal delivery of cisplatin and the effect of hyperthermia on drug penetration distance. Neoplasia 6:117–27. doi:10.1593/neo.03205.
  • El-Sayed IH, Huang X, El-Sayed MA. (2006). Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239:129–35. doi:10.1016/j.canlet.2005.07.035.
  • El-Shafie S, Fahmy SA, Ziko L, et al. (2020). Encapsulation of nedaplatin in novel PEGylated liposomes increases its cytotoxicity and genotoxicity against A549 and U2OS human cancer cells. Pharmaceutics 12:863. doi:10.3390/pharmaceutics12090863.
  • Emi T, Michaud K, Orton E, et al. (2019). Ultrasonic generation of pulsatile and sequential therapeutic delivery profiles from calcium-crosslinked alginate hydrogels. Molecules 24:1048. doi:10.3390/molecules24061048.
  • Emoto S, Yamaguchi H, Kamei T, et al. (2014). Intraperitoneal administration of cisplatin via an in situ cross-linkable hyaluronic acid-based hydrogel for peritoneal dissemination of gastric cancer. Surg Today 44:919–26. doi:10.1007/s00595-013-0674-6.
  • Galluzzi L, Senovilla L, Vitale I, et al. (2012). Molecular mechanisms of cisplatin resistance. Oncogene 31:1869–83. doi:10.1038/onc.2011.384.
  • Ghosh S. (2019). Cisplatin: the first metal based anticancer drug. Bioorg Chem 88:102925. doi:10.1016/j.bioorg.2019.102925.
  • Ghosh SC, Alpay SN, Klostergaard J. (2012). CD44: a validated target for improved delivery of cancer therapeutics. Expert Opin Ther Targets 16:635–50. doi:10.1517/14728222.2012.687374.
  • Gil MS, Thambi T, Phan VHG, et al. (2017). Injectable hydrogel-incorporated cancer cell-specific cisplatin releasing nanogels for targeted drug delivery. J Mater Chem B 5:7140–52. doi:10.1039/c7tb00873b.
  • Gong X, Wei H, Luo K-J, et al. (2014). UV-Vis spectrum and the third-order nonlinear optical properties of the chiral camphor-derived beta-diketonate platinum complexes. Chin J Struct Chem 33:422–8.
  • Guo Y, Jin S, Yuan H, et al. (2022). DNA-unresponsive platinum(II) complex induces ERS-mediated mitophagy in cancer cells. J Med Chem 65:520–30. doi:10.1021/acs.jmedchem.1c01690.
  • Ha D, Yang N, Nadithe V. (2016). Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6:287–96. doi:10.1016/j.apsb.2016.02.001.
  • Hato SV, Andrea K, de Vries IJM, et al. (2014). Molecular pathways: the immunogenic effects of platinum-based chemotherapeutics. Clin Cancer Res 20:2831–7. doi:10.1158/1078-0432.ccr-13-3141.
  • Hato SV, de Vries IJM, Lesterhuis WJ. (2012). STATing the importance of immune modulation by platinum chemotherapeutics. Oncoimmunology 1:234–6. doi:10.4161/onci.1.2.18126.
  • Hedman HK, Kirpekar F, Elmroth SKC. (2011). Platinum interference with siRNA non-seed regions fine-tunes silencing capacity. J Am Chem Soc 133:11977–84. doi:10.1021/ja111082e.
  • Hostetter AA, Osborn MF, DeRose VJ. (2012). RNA-Pt adducts following cisplatin treatment of Saccharomyces cerevisiae. ACS Chem Biol 7:218–25. doi:10.1021/cb200279p.
  • Huang K-B, Wang F-Y, Feng H-W, et al. (2019). An aminophosphonate ester ligand-containing platinum(II) complex induces potent immunogenic cell death in vitro and elicits effective anti-tumour immune responses in vivo. Chem Commun (Camb) 55:13066–9. doi:10.1039/c9cc06563f.
  • Hyun H, Park MH, Lim W, et al. (2018). Injectable visible light-cured glycol chitosan hydrogels with controlled release of anticancer drugs for local cancer therapy in vivo: a feasible study. Artif Cells Nanomed Biotechnol 46:874–82. doi:10.1080/21691401.2018.1470529.
  • Jin S, Guo Y, Guo Z, et al. (2021). Monofunctional platinum(II) anticancer agents. Pharmaceuticals (Basel) 14:133. doi:10.3390/ph14020133.
  • Jing Z, Ni R, Wang J, et al. (2021). Practical strategy to construct anti-osteosarcoma bone substitutes by loading cisplatin into 3D-printed titanium alloy implants using a thermosensitive hydrogel. Bioact Mater 6:4542–57. doi:10.1016/j.bioactmat.2021.05.007.
  • Joshi N, Yan J, Levy S, et al. (2018). Towards an arthritis flare-responsive drug delivery system. Nat Commun 9:1275. doi:10.1038/s41467-018-03691-1.
  • Kalayda GV, Wagner CH, Jaehde U. (2012). Relevance of copper transporter 1 for cisplatin resistance in human ovarian carcinoma cells. J Inorg Biochem 116:1–10. doi:10.1016/j.jinorgbio.2012.07.010.
  • Kanda Y, Kakutani K, Yurube T, et al. (2021). A novel topical treatment for bone metastases using a gelatin hydrogel incorporating cisplatin as a sustained release system. J Orthop Res 39:525–35. doi:10.1002/jor.24874.
  • Keshavarz M, Moloudi K, Paydar R, et al. (2018). Alginate hydrogel co-loaded with cisplatin and gold nanoparticles for computed tomography image-guided chemotherapy. J Biomater Appl 33:161–9. doi:10.1177/0885328218782355.
  • Ketabat F, Pundir M, Mohabatpour F, et al. (2019). Controlled drug delivery systems for oral cancer treatment-current status and future perspectives. Pharmaceutics 11:302. doi:10.3390/pharmaceutics11070302.
  • Khoury A, Deo KM, Aldrich-Wright JR. (2020). Recent advances in platinum-based chemotherapeutics that exhibit inhibitory and targeted mechanisms of action. J Inorg Biochem 207:111070. doi:10.1016/j.jinorgbio.2020.111070.
  • Kouser R, Vashist A, Zafaryab M, et al. (2018). Na-montmorillonite-dispersed sustainable polymer nanocomposite hydrogel films for anticancer drug delivery. ACS Omega 3:15809–20. doi:10.1021/acsomega.8b01691.
  • Lee JE, Abuzar SM, Seo Y, et al. (2019). Oxaliplatin-loaded chemically cross-linked hydrogels for prevention of postoperative abdominal adhesion and colorectal cancer therapy. Int J Pharm 565:50–8. doi:10.1016/j.ijpharm.2019.04.065.
  • Lee KY, Mooney DJ. (2012). Alginate: properties and biomedical applications. Prog Polym Sci 37:106–26. doi:10.1016/j.progpolymsci.2011.06.003.
  • Li J, Gong C, Feng X, et al. (2012). Biodegradable thermosensitive hydrogel for SAHA and DDP delivery: therapeutic effects on oral squamous cell carcinoma xenografts. Plos One 7:e33860. doi:10.1371/journal.pone.0033860.
  • Li J, Mooney DJ. (2016). Designing hydrogels for controlled drug delivery. Nat Rev Mater 1:16071. doi:10.1038/natrevmats.2016.71.
  • Li M, Li S, Zhou H, et al. (2020). Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy. Nat Commun 11:1126. doi:10.1038/s41467-020-14963-0.
  • Liang H-KT, Lai X-S, Wei M-F, et al. (2018). Intratumoral injection of thermogelling and sustained-release carboplatin-loaded hydrogel simplifies the administration and remains the synergistic effect with radiotherapy for mice gliomas. Biomaterials 151:38–52. doi:10.1016/j.biomaterials.2017.10.015.
  • Liang J, Liu G, Wang J, et al. (2017). Controlled release of BSA-linked cisplatin through a PepGel self-assembling peptide nanofiber hydrogel scaffold. Amino Acids 49:2015–21. doi:10.1007/s00726-017-2444-z.
  • Lin G, Mi P, Chu C, et al. (2016). Inorganic nanocarriers overcoming multidrug resistance for cancer theranostics. Adv Sci (Weinh) 3:1600134. doi:10.1002/advs.201600134.
  • Loghmani MH, Shojaie AF, Hosseini SA. (2021). Glutathione-responsive hydrogel and molecularly imprinted polymer nanospheres: new aspect on cisplatin delivery. J Ind Eng Chem 96:98–108. doi:10.1016/j.jiec.2020.12.018.
  • Lu QB. (2007). Molecular reaction mechanisms of combination treatments of low-dose cisplatin with radiotherapy and photodynamic therapy. J Med Chem 50:2601–4. doi:10.1021/jm061416b.
  • Mahdavinia GR, Afzali A, Etemadi H, et al. (2017). Magnetic/pH-sensitive nanocomposite hydrogel based carboxymethyl cellulose –g-polyacrylamide/montmorillonite for colon targeted drug delivery. Nanomed Res J 2:111–22. doi:10.22034/nmrj.2017.58964.1058.
  • Mahkam M, Doostie L. (2005). The relation between swelling properties and cross-linking of hydrogels designed for colon-specific drug delivery. Drug Deliv 12:343–7. doi:10.1080/10717540590952627.
  • Mirrahimi M, Beik J, Mirrahimi M, et al. (2020). Triple combination of heat, drug and radiation using alginate hydrogel co-loaded with gold nanoparticles and cisplatin for locally synergistic cancer therapy. Int J Biol Macromol 158:617–26. doi:10.1016/j.ijbiomac.2020.04.272.
  • Mirrahimi M, Khateri M, Beik J, et al. (2019). Enhancement of chemoradiation by co-incorporation of gold nanoparticles and cisplatin into alginate hydrogel. J Biomed Mater Res B Appl Biomater 107:2658–63. doi:10.1002/jbm.b.34356.
  • Mitsushima S, Koizumi Y, Uzuka S, et al. (2008). Dissolution of platinum in acidic media. Electrochim Acta 54:455–60. doi:10.1016/j.electacta.2008.07.052.
  • Moura MJ, Gil MH, Figueiredo MM. (2013). Delivery of cisplatin from thermosensitive co-cross-linked chitosan hydrogels. Eur Polym J 49:2504–10. doi:10.1016/j.eurpolymj.2013.02.032.
  • Muggia FM, Bonetti A, Hoeschele JD, et al. (2015). Platinum antitumor complexes: 50 years since Barnett Rosenberg’s discovery. J Clin Oncol 33:4219–26. + doi:10.1200/jco.2015.60.7481.
  • Němec T, Šonský J, Gruber J, et al. (2020). Platinum and platinum oxide nanoparticles generated by unipolar spark discharge. J Aerosol Sci 141:105502. doi:10.1016/j.jaerosci.2019.105502.
  • Obuobi S, Tay HK, Tram NDT, et al. (2019). Facile and efficient encapsulation of antimicrobial peptides via crosslinked DNA nanostructures and their application in wound therapy. J Control Release 313:120–30. doi:10.1016/j.jconrel.2019.10.013.
  • Ohta S, Hiramoto S, Amano Y, et al. (2017). Intraperitoneal delivery of cisplatin via a hyaluronan-based nanogel/in situ cross-linkable hydrogel hybrid system for peritoneal dissemination of gastric cancer. Mol Pharm 14:3105–13. doi:10.1021/acs.molpharmaceut.7b00349.
  • Otto G, Schuchmann M, Hoppe-Lotichius M, et al. (2013). How to decide about liver transplantation in patients with hepatocellular carcinoma: size and number of lesions or response to TACE? J Hepatol 60:464–5. doi:10.1016/j.jhep.2013.04.006.
  • Parker JP, Ude Z, Marmion CJ. (2016). Exploiting developments in nanotechnology for the preferential delivery of platinum-based anticancer agents to tumours: targeting some of the hallmarks of cancer. Metallomics 8:43–60. doi:10.1039/c5mt00181a.
  • Peng H, Huang Q, Yue H, et al. (2019). The antitumor effect of cisplatin-loaded thermosensitive chitosan hydrogel combined with radiotherapy on nasopharyngeal carcinoma. Int J Pharm 556:97–105. doi:10.1016/j.ijpharm.2018.11.068.
  • Qian K, Qian H, Cai J, et al. (2019). Evaluation of cisplatin-hydrogel for improving localized antitumor efficacy in gastric cancer. Pathol Res Pract 215:755–60. doi:10.1016/j.prp.2019.01.005.
  • Rebillard A, Lagadic-Gossmann D, Dimanche-Boitrel M-T. (2008). Cisplatin cytotoxicity: DNA and plasma membrane targets. Curr Med Chem 15:2656–63. doi:10.2174/092986708786242903.
  • Ren Y, Li X, Han B, et al. (2019). Improved anti-colorectal carcinomatosis effect of tannic acid co-loaded with oxaliplatin in nanoparticles encapsulated in thermosensitive hydrogel. Eur J Pharm Sci 128:279–89. doi:10.1016/j.ejps.2018.12.007.
  • Rosenberg B, Van Camp L, Krigas T. (1965). Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205:698–9. doi:10.1038/205698a0.
  • Rosenberg B, Vancamp L, Trosko JE, et al. (1969). Platinum compounds-a new class of potent antitumour agents. Nature 222:385–6. + doi:10.1038/222385a0.
  • Serini S, Cassano R, Bruni M, et al. (2021). Characterization of a hyaluronic acid and folic acid-based hydrogel for cisplatin delivery: antineoplastic effect in human ovarian cancer cells in vitro. Int J Pharm 606:120899. doi:10.1016/j.ijpharm.2021.120899.
  • Shen W, Chen X, Luan J, et al. (2017). Sustained codelivery of cisplatin and paclitaxel via an injectable prodrug hydrogel for ovarian cancer treatment. ACS Appl Mater Interf 9:40031–46. doi:10.1021/acsami.7b11998.
  • Shen W, Luan J, Cao L, et al. (2015). Thermogelling polymer-platinum(IV) conjugates for long-term delivery of cisplatin. Biomacromolecules 16:105–15. doi:10.1021/bm501220a.
  • Tang XZ, Kumar P, Alavi S, et al. (2012). Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit Rev Food Sci Nutr 52:426–42. doi:10.1080/10408398.2010.500508.
  • Tchounwou PB, Dasari S, Noubissi FK, et al. (2021). Advances in our understanding of the molecular mechanisms of action of cisplatin in cancer therapy. J Exp Pharmacol 13:303–28. doi:10.2147/jep.s267383.
  • Thakur S, Singh H, Singh A, et al. (2020). Thermosensitive injectable hydrogel containing carboplatin loaded nanoparticles: a dual approach for sustained and localized delivery with improved safety and therapeutic efficacy. J Drug Delivery Sci Technol 58:101817. doi:10.1016/j.jddst.2020.101817.
  • Theile D. (2017). Under-reported aspects of platinum drug pharmacology. Molecules 22:382. doi:10.3390/molecules22030382.
  • Tomita R, Sasabe E, Tomomura A, et al. (2020). Macrophage-derived exosomes attenuate the susceptibility of oral squamous cell carcinoma cells to chemotherapeutic drugs through the AKT/GSK-3 beta pathway. Oncol Rep 44:1905–16. doi:10.3892/or.2020.7748.
  • Ullah K, Sohail M, Murtaza G, et al. (2019). Natural and synthetic materials based CMCh/PVA hydrogels for oxaliplatin delivery: fabrication, characterization, in-vitro and in-vivo safety profiling. Int J Biol Macromol 122:538–48. doi:10.1016/j.ijbiomac.2018.10.203.
  • Vakili MR, Mohammed-Saeid W, Aljasser A, et al. (2021). Development of mucoadhesive hydrogels based on polyacrylic acid grafted cellulose nanocrystals for local cisplatin delivery. Carbohydr Polym 255:117332. doi:10.1016/j.carbpol.2020.117332.
  • Wang Q, Hou X, Gao J, et al. (2020). A coassembled peptide hydrogel boosts the radiosensitization of cisplatin. Chem Commun (Camb) 56:13017–20. doi:10.1039/d0cc05184e.
  • Wang Q, Jiang N, Fu B, et al. (2019). Self-assembling peptide-based nanodrug delivery systems. Biomater Sci 7:4888–911. doi:10.1039/c9bm01212e.
  • Wang X, Wang J, Wu W, et al. (2016). Vaginal delivery of carboplatin-loaded thermosensitive hydrogel to prevent local cervical cancer recurrence in mice. Drug Deliv 23:3544–51. doi:10.1080/10717544.2016.1205158.
  • Wang Y, Wang L, Chen G, et al. (2017). Carboplatin-complexed and cRGD-conjugated unimolecular nanoparticles for targeted ovarian cancer therapy. Macromol Biosci 17:10.1002. doi:10.1002/mabi.201600292.
  • Wen Q, Zhang Y, Luo J, et al. (2020). Therapeutic efficacy of thermosensitive pluronic hydrogel for codelivery of resveratrol microspheres and cisplatin in the treatment of liver cancer ascites. Int J Pharm 582:119334. doi:10.1016/j.ijpharm.2020.119334.
  • Wu C, Liu J, Zhai Z, et al. (2020). Double-crosslinked nanocomposite hydrogels for temporal control of drug dosing in combination therapy. Acta Biomater 106:278–88. doi:10.1016/j.actbio.2020.02.021.
  • Wu C, Wang C, Sun L, et al. (2020). PLGA nanoparticle-reinforced supramolecular peptide hydrogels for local delivery of multiple drugs with enhanced synergism. Soft Matter 16:10528–36. doi:10.1039/d0sm01152e.
  • Wu H, Song L, Chen L, et al. (2018). Injectable magnetic supramolecular hydrogel with magnetocaloric liquid-conformal property prevents post-operative recurrence in a breast cancer model. Acta Biomater 74:302–11. doi:10.1016/j.actbio.2018.04.052.
  • Wu X, Wu Y, Ye H, et al. (2017). Interleukin-15 and cisplatin co-encapsulated thermosensitive polypeptide hydrogels for combined immuno-chemotherapy. J Control Release 255:81–93. doi:10.1016/j.jconrel.2017.04.011.
  • Xiangsheng L, Jinhong J, Chong Hyun C, et al. (2021). Development of facile and versatile platinum drug delivering silicasome nanocarriers for efficient pancreatic cancer chemo-immunotherapy. Small 17:e2005993. doi:10.1002/smll.202005993.
  • Xiao S, Wang Y, Ma W, et al. (2022). Intraperitoneal administration of thermosensitive hydrogel Co-loaded with norcantharidin nanoparticles and oxaliplatin inhibits malignant ascites of hepatocellular carcinoma. Drug Deliv 29:2713–22. doi:10.1080/10717544.2022.2111480.
  • Xu S, Du X, Feng G, et al. (2018). Efficient inhibition of cervical cancer by dual drugs loaded in biodegradable thermosensitive hydrogel composites. Oncotarget 9:282–92. doi:10.18632/oncotarget.22965.
  • Xu S, Tang YY, Yu YX, et al. (2017). Novel composite drug delivery system as a novel radio sensitizer for the local treatment of cervical carcinoma. Drug Deliv 24:1139–47. doi:10.1080/10717544.2017.1362676.
  • Xu T, Liang C, Zheng D, et al. (2020). Nuclear delivery of dual anticancer drug-based nanomedicine constructed by cisplatinum-induced peptide self-assembly. Nanoscale 12:15275–82. doi:10.1039/d0nr00143k.
  • Yamaguchi K, Hiraike O, Iwaki H, et al. (2021). Intraperitoneal administration of a cisplatin-loaded nanogel through a hybrid system containing an alginic acid-based nanogel and an in situ cross-linkable hydrogel for peritoneal dissemination of ovarian cancer. Mol Pharm 18:4090–8. doi:10.1021/acs.molpharmaceut.1c00514.
  • Yamashita K, Tsunoda S, Gunji S, et al. (2019). Intraperitoneal chemotherapy for peritoneal metastases using sustained release formula of cisplatin-incorporated gelatin hydrogel granules. Surg Today 49:785–94. doi:10.1007/s00595-019-01792-y.
  • Yang C-X, Xing L, Chang X, et al. (2020). Synergistic platinum(II) prodrug nanoparticles for enhanced breast cancer therapy. Mol Pharm 17:1300–9. doi:10.1021/acs.molpharmaceut.9b01318.
  • Yang X, Yeung W-HO, Tan KV, et al. (2021). Development of cisplatin-loaded hydrogels for trans-portal vein chemoembolization in an orthotopic liver cancer mouse model. Drug Deliv 28:520–9. doi:10.1080/10717544.2021.1895908.
  • Yang X, Zhang L, Zheng L, et al. (2022). An in situ spontaneously forming micelle-hydrogel system with programmable release for the sequential therapy of anaplastic thyroid cancer. J Mater Chem B 10:1236–49. doi:10.1039/d1tb01904j.
  • Yoon SJ, Moon YJ, Chun HJ, et al. (2019). Doxorubicin center dot hydrochloride/cisplatin-loaded hydrogel/nanosized (2-hydroxypropyl)-beta-cyclodextrin local drug-delivery system for osteosarcoma treatment in vivo. Nanomaterials 9:1652. doi:10.3390/nano9121652.
  • Yu C, Wang Z, Sun Z, et al. (2020). Platinum-based combination therapy: molecular rationale, current clinical uses, and future perspectives. J Med Chem 63:13397–412. doi:10.1021/acs.jmedchem.0c00950.
  • Yu S, Wei S, Liu L, et al. (2019). Enhanced local cancer therapy using a CA4P and CDDP co-loaded polypeptide gel depot. Biomater Sci 7:860–6. doi:10.1039/c8bm01442f.
  • Yu S, Zhang D, He C, et al. (2017). Injectable thermosensitive polypeptide-based CDDP-complexed hydrogel for improving localized antitumor efficacy. Biomacromolecules 18:4341–8. doi:10.1021/acs.biomac.7b01374.
  • Yuan S, Ding X, Cui Y, et al. (2017). Cisplatin preferentially binds to zinc finger proteins containing C3H1 or C4 Motifs. Eur J Inorg Chem 2017:1778–84. doi:10.1002/ejic.201601140.
  • Zhang S, Lovejoy KS, Shima JE, et al. (2006). Organic cation transporters are determinants of oxaliplatin cytotoxicity. Cancer Res 66:8847–57. doi:10.1158/0008-5472.can-06-0769.
  • Zhang Z, He C, Chen X. (2020). Injectable click polypeptide hydrogels via tetrazine-norbornene chemistry for localized cisplatin release. Polymers (Basel) 12:884. doi:10.3390/polym12040884.
  • Zhou Z, Huang D, Bao J, et al. (2012). A synergistically enhanced T-1-T-2 dual-modal contrast agent. Adv Mater 24:6223–8. doi:10.1002/adma.201203169.