919
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Multifunctional cell membranes-based nano-carriers for targeted therapies: a review of recent trends and future perspective

, , &
Article: 2288797 | Received 31 Jul 2023, Accepted 05 Nov 2023, Published online: 09 Dec 2023

References

  • Acharya S, Sahoo SK. (2011). PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 63:1–25. doi: 10.1016/j.addr.2010.10.008.
  • Ahmed SF, Mofijur M, Rafa N, et al. (2022). Green approaches in synthesising nanomaterials for environmental nanobioremediation: technological advancements, applications, benefits and challenges. Environ Res 204:111967. doi: 10.1016/j.envres.2021.111967.
  • Ai X, Wang S, Duan Y, et al. (2020). Emerging approaches to functionalizing cell membrane-coated nanoparticles. Biochemistry 60:941–55. doi: 10.1021/acs.biochem.0c00343.
  • Angsantikul P, Fang RH, Zhang L. (2017). Toxoid vaccination against bacterial infection using cell membrane-coated nanoparticles. Bioconjug Chem 29:604–12. doi: 10.1021/acs.bioconjchem.7b00692.
  • Angsantikul P, Thamphiwatana S, Zhang Q, et al. (2018). Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against Helicobacter pylori infection. Adv Ther (Weinh) 1:1800016. doi: 10.1002/adtp.201800016.
  • Armstrong DK, Bundy B, Wenzel L, et al. (2006). Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med 354:34–43. doi: 10.1056/NEJMoa052985.
  • Aslam B, Wang W, Arshad MI, et al. (2018). Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 11:1645–58. doi: 10.2147/IDR.S173867.
  • Barua S, Mitragotri S. (2013). Synergistic targeting of cell membrane, cytoplasm, and nucleus of cancer cells using rod-shaped nanoparticles. ACS Nano 7:9558–70. doi: 10.1021/nn403913k.
  • Bidkar AP, Sanpui P, Ghosh SS. (2020). Transferrin-conjugated red blood cell membrane-coated poly (lactic-co-glycolic acid) nanoparticles for the delivery of doxorubicin and methylene blue. ACS Appl Nano Mater 3:3807–19. doi: 10.1021/acsanm.0c00502.
  • Blanco E, Shen H, Ferrari M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–51. doi: 10.1038/nbt.3330.
  • Bose RJ, Kim BJ, Arai Y, et al. (2018). Bioengineered stem cell membrane functionalized nanocarriers for therapeutic targeting of severe hindlimb ischemia. Biomaterials 185:360–70. doi: 10.1016/j.biomaterials.2018.08.018.
  • Chaplin DD. (2010). Overview of the immune response. J Allergy Clin Immunol 125:S3–S23. doi: 10.1016/j.jaci.2009.12.980.
  • Chen L, Deng H, Cui H, et al. (2018). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9:7204–18. doi: 10.18632/oncotarget.23208.
  • Chen M, Chen M, He J. (2019). Cancer cell membrane cloaking nanoparticles for targeted co-delivery of doxorubicin and PD-L1 siRNA. Artif Cells Nanomed Biotechnol 47:1635–41. doi: 10.1080/21691401.2019.1608219.
  • Chen M-F, Huang SJ, Huang C-C, et al. (2016). Saikosaponin d induces cell death through caspase-3-dependent, caspase-3-independent and mitochondrial pathways in mammalian hepatic stellate cells. BMC Cancer 16:532. doi: 10.1186/s12885-016-2599-0.
  • Chugh V, Vijaya Krishna K, Pandit A. (2021). Cell membrane-coated mimics: a methodological approach for fabrication, characterization for therapeutic applications, and challenges for clinical translation. ACS Nano 15:17080–123. doi: 10.1021/acsnano.1c03800.
  • Copp JA, Fang RH, Luk BT, et al. (2014). Clearance of pathological antibodies using biomimetic nanoparticles. Proc Natl Acad Sci U S A 111:13481–6. doi: 10.1073/pnas.1412420111.
  • Corbo C, Cromer WE, Molinaro R, et al. (2017). Engineered biomimetic nanovesicles show intrinsic anti-inflammatory properties for the treatment of inflammatory bowel diseases. Nanoscale 9:14581–91. doi: 10.1039/c7nr04734g.
  • Corbo C, Molinaro R, Taraballi F, et al. (2017). Unveiling the in vivo protein corona of circulating leukocyte-like carriers. ACS Nano 11:3262–73. doi: 10.1021/acsnano.7b00376.
  • Crist RM, Grossman JH, Patri AK, et al. (2013). Common pitfalls in nanotechnology: lessons learned from NCI’s Nanotechnology Characterization Laboratory. Integr Biol (Camb) 5:66–73. doi: 10.1039/c2ib20117h.
  • D Friedman, A, SE, Claypool and R. Liu (2013). The smart targeting of nanoparticles. Curr Pharm Des 19:6315–29. doi: 10.2174/13816128113199990375.
  • Davis ME, Chen Z, Shin DM. (2008). Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–82. doi: 10.1038/nrd2614.
  • De Oliveira S, Rosowski EE, Huttenlocher A. (2016). Neutrophil migration in infection and wound repair: going forward in reverse. Nat Rev Immunol 16:378–91. doi: 10.1038/nri.2016.49.
  • Deirram N, Zhang C, Kermaniyan SS, et al. (2019). pH-responsive polymer nanoparticles for drug delivery. Macromol Rapid Commun 40:e1800917. doi: 10.1002/marc.201800917.
  • Dong X, Chu D, Wang Z. (2017). Leukocyte-mediated delivery of nanotherapeutics in inflammatory and tumor sites. Theranostics 7:751–63. doi: 10.7150/thno.18069.
  • Dong X, Gao J, Zhang CY, et al. (2019). Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke. ACS Nano 13:1272–83. doi: 10.1021/acsnano.8b06572.
  • Evangelopoulos M, Yazdi IK, Acciardo S, et al. (2020). Biomimetic cellular vectors for enhancing drug delivery to the lungs. Sci Rep 10:172. doi: 10.1038/s41598-019-55909-x.
  • Fan W, Yung B, Huang P, et al. (2017). Nanotechnology for multimodal synergistic cancer therapy. Chem Rev 117:13566–638. doi: 10.1021/acs.chemrev.7b00258.
  • Fan Z, Zhou H, Li PY, et al. (2014). Structural elucidation of cell membrane-derived nanoparticles using molecular probes. J Mater Chem B 2:8231–8. doi: 10.1039/c4tb00980k.
  • Fang RH, Hu C-MJ, Chen KNH, et al. (2013). Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale 5:8884–8. doi: 10.1039/c3nr03064d.
  • Fang RH, Hu C-MJ, Luk BT, et al. (2014). Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett 14:2181–8. doi: 10.1021/nl500618u.
  • Fang RH, Jiang Y, Fang JC, et al. (2017). Cell membrane-derived nanomaterials for biomedical applications. Biomaterials 128:69–83. doi: 10.1016/j.biomaterials.2017.02.041.
  • Fang RH, Kroll AV, Gao W, et al. (2018). Cell membrane coating nanotechnology. Adv Mater 30:1706759. doi: 10.1002/adma.201706759.
  • Fang RH, Zhang L. (2016). Nanoparticle-based modulation of the immune system. Annu Rev Chem Biomol Eng 7:305–26. doi: 10.1146/annurev-chembioeng-080615-034446.
  • Farokhzad OC, Cheng J, Teply BA, et al. (2006). Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 103:6315–20. doi: 10.1073/pnas.0601755103.
  • Farokhzad OC. (2012). Using ligands to target cancer cells. Clin Adv Hematol Oncol: H&O 10:543–4.
  • Fay BL, Melamed JR, Day ES. (2015). Nanoshell-mediated photothermal therapy can enhance chemotherapy in inflammatory breast cancer cells. IJN 10:6931. doi: 10.2147/IJN.S93031.
  • Feng L, Dou C, Xia Y, et al. (2021). Neutrophil-like cell-membrane-coated nanozyme therapy for ischemic brain damage and long-term neurological functional recovery. ACS Nano 15:2263–80. doi: 10.1021/acsnano.0c07973.
  • Gagliardi A, Giuliano E, Venkateswararao E, et al. (2021). Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front Pharmacol 12:601626. doi: 10.3389/fphar.2021.601626.
  • Gao C, Huang Q, Liu C, et al. (2020). Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat Commun 11:2622. doi: 10.1038/s41467-020-16439-7.
  • Gao C, Lin Z, Jurado-Sánchez B, et al. (2016). Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small 12:4056–62. doi: 10.1002/smll.201600624.
  • Gao C, Lin Z, Wu Z, et al. (2016). Stem-cell-membrane camouflaging on near-infrared photoactivated upconversion nanoarchitectures for in vivo remote-controlled photodynamic therapy. ACS Appl Mater Interfaces 8:34252–60. doi: 10.1021/acsami.6b12865.
  • Gao W, Fang RH, Thamphiwatana S, et al. (2015). Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett 15:1403–9. doi: 10.1021/nl504798g.
  • Gao W, Hu C-MJ, Fang RH, et al. (2013). Liposome-like nanostructures for drug delivery. J Mater Chem B 1:6569–85. doi: 10.1039/C3TB21238F.
  • Gao W, Zhang L. (2015). Coating nanoparticles with cell membranes for targeted drug delivery. J Drug Target 23:619–26. doi: 10.3109/1061186X.2015.1052074.
  • Gao W, Zhang L. (2015). Engineering red-blood-cell-membrane–coated nanoparticles for broad biomedical applications. Alche J 61:738–46. doi: 10.1002/aic.14735.
  • Gawaz M, Stellos K, Langer H. (2008). Platelets modulate atherogenesis and progression of atherosclerotic plaques via interaction with progenitor and dendritic cells. J Thromb Haemost 6:235–42. doi: 10.1111/j.1538-7836.2008.02867.x.
  • Gerritzen MJH, Martens DE, Wijffels RH, et al. (2017). Bioengineering bacterial outer membrane vesicles as vaccine platform. Biotechnol Adv 35:565–74. doi: 10.1016/j.biotechadv.2017.05.003.
  • Greenow K, Pearce NJ, Ramji DP. (2005). The key role of apolipoprotein E in atherosclerosis. J Mol Med (Berl) 83:329–42. doi: 10.1007/s00109-004-0631-3.
  • Gunatillake PA, Adhikari R, Gadegaard N. (2003). Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16; discussion 16. doi: 10.22203/ecm.v005a01.
  • Guo Y, Wang D, Song Q, et al. (2015). Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma. ACS Nano 9:6918–33. doi: 10.1021/acsnano.5b01042.
  • Han Y, Pan H, Li W, et al. (2019). T cell membrane mimicking nanoparticles with bioorthogonal targeting and immune recognition for enhanced photothermal therapy. Adv Sci (Weinh) 6:1900251. doi: 10.1002/advs.201900251.
  • He Y, Li R, Liang J, et al. (2018). Drug targeting through platelet membrane-coated nanoparticles for the treatment of rheumatoid arthritis. Nano Res 11:6086–101. doi: 10.1007/s12274-018-2126-5.
  • Holst J, Oster P, Arnold R, et al. (2013). Vaccines against meningococcal serogroup B disease containing outer membrane vesicles (OMV): lessons from past programs and implications for the future. Hum Vaccin Immunother 9:1241–53. doi: 10.4161/hv.24129.
  • Hu C-MJ, Fang RH, Copp J, et al. (2013). A biomimetic nanosponge that absorbs pore-forming toxins. Nat Nanotechnol 8:336–40. doi: 10.1038/nnano.2013.54.
  • Hu C-MJ, Fang RH, Luk BT, et al. (2013). Marker-of-self’functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale 5:2664–8. doi: 10.1039/c3nr00015j.
  • Hu C-MJ, Fang RH, Wang K-C, et al. (2015). Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526:118–21. doi: 10.1038/nature15373.
  • Hu C-MJ, Zhang L, Aryal S, et al. (2011). Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A 108:10980–5. doi: 10.1073/pnas.1106634108.
  • Hu Q-Y, Berti F, Adamo R. (2016). Towards the next generation of biomedicines by site-selective conjugation. Chem Soc Rev 45:1691–719. doi: 10.1039/c4cs00388h.
  • Imran M, Shah MR, Ullah F, et al. (2017). Double-tailed acyl glycoside niosomal nanocarrier for enhanced oral bioavailability of Cefixime. Artif Cells Nanomed Biotechnol 45:1440–51. doi: 10.1080/21691401.2016.1246451.
  • Jeon M, Halbert MV, Stephen ZR, et al. (2021). Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: fundamentals, challenges, applications, and prospectives. Adv Mater 33:1906539. p. doi: 10.1002/adma.201906539.
  • Kalidoss M, Yunus Basha R, Doble M, et al. (2019). Theranostic calcium phosphate nanoparticles with potential for multimodal imaging and drug delivery. Front Bioeng Biotechnol 7:126. doi: 10.3389/fbioe.2019.00126.
  • Kawai T, Akira S. (2011). Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–50. doi: 10.1016/j.immuni.2011.05.006.
  • Khoury MK, Yang H, Liu B. (2021). Macrophage biology in cardiovascular diseases. Arterioscler Thromb Vasc Biol 41:e77–e81. doi: 10.1161/ATVBAHA.120.313584.
  • Kolaczkowska E, Kubes P. (2013). Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–75. doi: 10.1038/nri3399.
  • Kolhar P, Anselmo AC, Gupta V, et al. (2013). Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci U S A 110:10753–8. doi: 10.1073/pnas.1308345110.
  • Kortel M, Mansuriya BD, Vargas Santana N, et al. (2020). Graphene quantum dots as flourishing nanomaterials for bio-imaging, therapy development, and micro-supercapacitors. Micromachines (Basel) 11:866. doi: 10.3390/mi11090866.
  • Kozlovskaya V, Alexander JF, Wang Y, et al. (2014). Internalization of red blood cell-mimicking hydrogel capsules with pH-triggered shape responses. ACS Nano 8:5725–37. doi: 10.1021/nn500512x.
  • Kroll AV, Fang RH, Jiang Y, et al. (2017). Nanoparticulate delivery of cancer cell membrane elicits multiantigenic antitumor immunity. Adv Mater 29:1703969. doi: 10.1002/adma.201703969.
  • Kroll AV, Fang RH, Zhang L. (2017). Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjug Chem 28:23–32. doi: 10.1021/acs.bioconjchem.6b00569.
  • Kuai Q, Wang Y, Gao F, et al. (2019). Peptide self-assembly nanoparticles loaded with panobinostat to activate latent human immunodeficiency virus. J Biomed Nanotechnol 15:979–92. doi: 10.1166/jbn.2019.2764.
  • Lei C, Qian K, Li T, et al. (2020). Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig. Nat Commun 11:2070. doi: 10.1038/s41467-020-16048-4.
  • Li L-L, Xu J-H, Qi G-B, et al. (2014). Core–shell supramolecular gelatin nanoparticles for adaptive and “on-demand” antibiotic delivery. ACS Nano 8:4975–83. doi: 10.1021/nn501040h.
  • Li M, Fang H, Liu Q, et al. (2020). Red blood cell membrane-coated upconversion nanoparticles for pretargeted multimodality imaging of triple-negative breast cancer. Biomater Sci 8:1802–14. doi: 10.1039/d0bm00029a.
  • Li PY, Fan Z, Cheng H. (2018). Cell membrane bioconjugation and membrane-derived nanomaterials for immunotherapy. Bioconjug Chem 29:624–34. doi: 10.1021/acs.bioconjchem.7b00669.
  • Li R, He Y, Zhang S, et al. (2018). Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharm Sin B 8:14–22. doi: 10.1016/j.apsb.2017.11.009.
  • Li Z, Hu S, Cheng K. (2018). Platelets and their biomimetics for regenerative medicine and cancer therapies. J Mater Chem B 6:7354–65. doi: 10.1039/C8TB02301H.
  • Liang X, Ye X, Wang C, et al. (2019). Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J Control Release 296:150–61. doi: 10.1016/j.jconrel.2019.01.027.
  • Lim SY, Yuzhalin AE, Gordon-Weeks AN, et al. (2016). Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget 7:28697–710. doi: 10.18632/oncotarget.7376.
  • Liu C-M, Chen G-B, Chen H-H, et al. (2019). Cancer cell membrane-cloaked mesoporous silica nanoparticles with a pH-sensitive gatekeeper for cancer treatment. Colloids Surf B Biointerfaces 175:477–86. doi: 10.1016/j.colsurfb.2018.12.038.
  • Liu S, Li L, Zhang X, et al. (2023). Nanotherapies from an oncologist doctor’s view. Smart Mater Med 4:183–98. doi: 10.1016/j.smaim.2022.07.005.
  • Liu X, Yuan L, Zhang L, et al. (2018). Bioinspired artificial nanodecoys for hepatitis B virus. Angewandte Chemie 130:12679–83. doi: 10.1002/ange.201807212.
  • Liu X-Q, Tang R-Z. (2017). Biological responses to nanomaterials: understanding nano-bio effects on cell behaviors. Drug Deliv 24:1–15. doi: 10.1080/10717544.2017.1375577.
  • Liu Y, Luo J, Chen X, et al. (2019). Cell membrane coating technology: a promising strategy for biomedical applications. Nanomicro Lett 11:100. p. doi: 10.1007/s40820-019-0330-9.
  • Lovitt CJ, Shelper TB, Avery VM. (2018). Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins. BMC Cancer 18:41. doi: 10.1186/s12885-017-3953-6.
  • Luk BT, Hu C-MJ, Fang RH, et al. (2014). Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale 6:2730–7. doi: 10.1039/c3nr06371b.
  • Ma W, Zhu D, Li J, et al. (2020). Coating biomimetic nanoparticles with chimeric antigen receptor T cell-membrane provides high specificity for hepatocellular carcinoma photothermal therapy treatment. Theranostics 10:1281–95. doi: 10.7150/thno.40291.
  • Ma Y, Ma Y, Gao M, et al. (2021). Platelet-mimicking therapeutic system for noninvasive mitigation of the progression of atherosclerotic plaques. Adv Sci (Weinh) 8:2004128. doi: 10.1002/advs.202004128.
  • Maeda H. (2001). The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-sepective macromolecular drug targeting. Adv Enzyme Regul 41:189–207. doi: 10.1016/s0065-2571(00)00013-3.
  • Matsumura Y, Maeda H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–92.
  • Melamed JR, Edelstein RS, Day ES. (2015). Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano 9:6–11. doi: 10.1021/acsnano.5b00021.
  • Mishra P, Jain N. (2003). Folate conjugated doxorubicin-loaded membrane vesicles for improved cancer therapy. Drug Deliv 10:277–82. doi: 10.1080/drd_10_4_277.
  • Moghimi SM, Hunter A, Andresen T. (2012). Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu Rev Pharmacol Toxicol 52:481–503. doi: 10.1146/annurev-pharmtox-010611-134623.
  • Molinaro R, Pastò A, Corbo C, et al. (2019). Macrophage-derived nanovesicles exert intrinsic anti-inflammatory properties and prolong survival in sepsis through a direct interaction with macrophages. Nanoscale 11:13576–86. doi: 10.1039/c9nr04253a.
  • Molinaro R, Pasto A, Taraballi F, et al. (2020). Biomimetic nanoparticles potentiate the anti-inflammatory properties of dexamethasone and reduce the cytokine storm syndrome: an additional weapon against COVID-19? Nanomaterials 10:2301. doi: 10.3390/nano10112301.
  • Mu X, Li J, Yan S, et al. (2018). siRNA delivery with stem cell membrane-coated magnetic nanoparticles for imaging-guided photothermal therapy and gene therapy. ACS Biomater Sci Eng 4:3895–905. doi: 10.1021/acsbiomaterials.8b00858.
  • Naahidi S, Jafari M, Edalat F, et al. (2013). Biocompatibility of engineered nanoparticles for drug delivery. J Control Release 166:182–94. doi: 10.1016/j.jconrel.2012.12.013.
  • Narain A, Asawa S, Chhabria V, et al. (2017). Cell membrane coated nanoparticles: next-generation therapeutics. Nanomedicine (Lond) 12:2677–92. doi: 10.2217/nnm-2017-0225.
  • Nel AE, Mädler L, Velegol D, et al. (2009). Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8:543–57. doi: 10.1038/nmat2442.
  • Németh T, Sperandio M, Mócsai A. (2020). Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 19:253–75. doi: 10.1038/s41573-019-0054-z.
  • Nie S. (2010). Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine (Lond) 5:523–8. doi: 10.2217/nnm.10.23.
  • Oldenborg PA, Zheleznyak A, Fang YF, et al. (2000). Role of CD47 as a marker of self on red blood cells. Science 288:2051–4. doi: 10.1126/science.288.5473.2051.
  • Pan W, Ge Y, Yu Z, et al. (2019). A cancer cell membrane-encapsulated MnO 2 nanoreactor for combined photodynamic-starvation therapy. Chem Commun (Camb) 55:5115–8. doi: 10.1039/c9cc01386e.
  • Parodi A, Molinaro R, Sushnitha M, et al. (2017). Bio-inspired engineering of cell-and virus-like nanoparticles for drug delivery. Biomaterials 147:155–68. doi: 10.1016/j.biomaterials.2017.09.020.
  • Pasto A, Giordano F, Evangelopoulos M, et al. (2019). Cell membrane protein functionalization of nanoparticles as a new tumor-targeting strategy. Clin Transl Med 8:8–9. p. 1. doi: 10.1186/s40169-019-0224-y.
  • Peer D, et al. (2020). Nanocarriers as an emerging platform for cancer therapy. Nano-Enabled Med Appl 377:1–21.
  • Perera AS, Coppens M-O. (2019). Re-designing materials for biomedical applications: from biomimicry to nature-inspired chemical engineering. Philos Trans A Math Phys Eng Sci 377:20180268. doi: 10.1098/rsta.2018.0268.
  • Petros RA, DeSimone JM. (2010). Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9:615–27. doi: 10.1038/nrd2591.
  • Piao J-G, Wang L, Gao F, et al. (2014). Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. ACS Nano 8:10414–25. doi: 10.1021/nn503779d.
  • Pitchaimani A, Nguyen TDT, Aryal S. (2018). Natural killer cell membrane infused biomimetic liposomes for targeted tumor therapy. Biomaterials 160:124–37. doi: 10.1016/j.biomaterials.2018.01.018.
  • Qie Y, Yuan H, von Roemeling CA, et al. (2016). Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Sci Rep 6:26269. doi: 10.1038/srep26269.
  • Rao L, Cai B, Bu L-L, et al. (2017). Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. Acs Nano 11:3496–505. doi: 10.1021/acsnano.7b00133.
  • Rao L, Tian R, Chen X. (2020). Cell-membrane-mimicking nanodecoys against infectious diseases. ACS Nano 14:2569–74. doi: 10.1021/acsnano.0c01665.
  • Rao L, Wang W, Meng Q-F, et al. (2018). A biomimetic nanodecoy traps Zika virus to prevent viral infection and fetal microcephaly development. Nano Lett 19:2215–22. doi: 10.1021/acs.nanolett.8b03913.
  • Rao L, Xia S, Xu W, et al. (2020). Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc Natl Acad Sci U S A 117:27141–7. doi: 10.1073/pnas.2014352117.
  • Riley R, O’Sullivan R, Potocny A, et al. (2018). Evaluating nanoshells and a potent biladiene photosensitizer for dual photothermal and photodynamic therapy of triple negative breast cancer cells. Nanomaterials 8:658. doi: 10.3390/nano8090658.
  • Riley RS, Day ES. (2017). Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip Rev: Nanomed Nanobiotechnol, 9(4):e1449.
  • Ruan L, Zhao K, Tian X, et al. (2022). Macrophages exosomes-coated Fe3O4 nanoparticles for oxygen independent generation of free radicals and hypoxic cancer therapy. Mater Today Commun 33:104672. doi: 10.1016/j.mtcomm.2022.104672.
  • Safarov T, Kiran B, Bagirova M, et al. (2019). An overview of nanotechnology-based treatment approaches against Helicobacter Pylori. Expert Rev anti Infect Ther 17:829–40. doi: 10.1080/14787210.2019.1677464.
  • Saha T, Bin Mobarak M, Uddin MN, et al. (2023). Biogenic synthesis of copper oxide (CuO) NPs exploiting Averrhoa carambola leaf extract and its potential antibacterial activity. Mater Chem Phys 305:127979. doi: 10.1016/j.matchemphys.2023.127979.
  • Sanna V, Pala N, Sechi M. (2014). Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine 9:467–83. doi: 10.2147/IJN.S36654.
  • Sargazi S, Laraib U, Er S, et al. (2022). Application of green gold nanoparticles in cancer therapy and diagnosis. Nanomaterials 12:1102. doi: 10.3390/nano12071102.
  • Schofield ZV, Woodruff TM, Halai R, et al. (2013). Neutrophils—a key component of ischemia-reperfusion injury. Shock 40:463–70. doi: 10.1097/SHK.0000000000000044.
  • Shao J, Abdelghani M, Shen G, et al. (2018). Erythrocyte membrane modified janus polymeric motors for thrombus therapy. ACS Nano 12:4877–85. doi: 10.1021/acsnano.8b01772.
  • She X, Chen L, Yi Z, et al. (2018). Tailored mesoporous silica nanoparticles for controlled drug delivery: platform fabrication, targeted delivery, and computational design and analysis. Mini Rev Med Chem 18:976–89. doi: 10.2174/1389557516666160505114814.
  • Sheng S, Yu X, Xing G, et al. (2023). An apoptotic body-based vehicle with navigation for photothermal-immunotherapy by precise delivery and tumor microenvironment regulation. Adv Funct Mater 33:2212118. doi: 10.1002/adfm.202212118.
  • Shi J, Kantoff PW, Wooster R, et al. (2017). Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17:20–37. doi: 10.1038/nrc.2016.108.
  • Silva AKA, et al. (2013). Cell-derived vesicles as a bioplatform for the encapsulation of theranostic nanomaterials. Nanoscale 5:11374–84.
  • Song Y, Huang Z, Liu X, et al. (2019). Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE−/−) mice. Nanomedicine 15:13–24. doi: 10.1016/j.nano.2018.08.002.
  • Sparano JA, Wang M, Martino S, et al. (2008). Weekly paclitaxel in the adjuvant treatment of breast cancer. N Engl J Med 358:1663–71. doi: 10.1056/NEJMoa0707056.
  • Su Y, Wang T, Su Y, et al. (2020). A neutrophil membrane-functionalized black phosphorus riding inflammatory signal for positive feedback and multimode cancer therapy. Mater Horiz 7:574–85. doi: 10.1039/C9MH01068H.
  • Suck G, Odendahl M, Nowakowska P, et al. (2016). NK-92: an ‘off-the-shelf therapeutic’for adoptive natural killer cell-based cancer immunotherapy. Cancer Immunol Immunother 65:485–92. doi: 10.1007/s00262-015-1761-x.
  • Suk JS, Xu Q, Kim N, et al. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99:28–51. doi: 10.1016/j.addr.2015.09.012.
  • Sun D, Chen J, Wang Y, et al. (2019). Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery. Theranostics 9:6885–900. doi: 10.7150/thno.36510.
  • Sun H, Su J, Meng Q, et al. (2016). Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv Mater 28:9581–8. doi: 10.1002/adma.201602173.
  • Sun H, Su J, Meng Q, et al. (2017). Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer. Adv Funct Mater 27:1604300. doi: 10.1002/adfm.201604300.
  • Sun K, Yu W, Ji B, et al. (2020). Saikosaponin D loaded macrophage membrane-biomimetic nanoparticles target angiogenic signaling for breast cancer therapy. Appl Mater Today 18:100505. doi: 10.1016/j.apmt.2019.100505.
  • Sushnitha M, Evangelopoulos M, Tasciotti E, et al. (2020). Cell membrane-based biomimetic nanoparticles and the immune system: immunomodulatory interactions to therapeutic applications. Front Bioeng Biotechnol 8:627. doi: 10.3389/fbioe.2020.00627.
  • Tang C, Wang C, Zhang Y, et al. (2019). Recognition, intervention, and monitoring of neutrophils in acute ischemic stroke. Nano Lett 19:4470–7. doi: 10.1021/acs.nanolett.9b01282.
  • Thamphiwatana S, Angsantikul P, Escajadillo T, et al. (2017). Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management. Proc Natl Acad Sci U S A 114:11488–93. doi: 10.1073/pnas.1714267114.
  • Thon JN, Italiano JE. (2012). Platelets: production, morphology and ultrastructure. Antiplatelet Agents 27:1–7.
  • Tian H, Luo Z, Liu L, et al. (2017). Cancer cell membrane-biomimetic oxygen nanocarrier for breaking hypoxia-induced chemoresistance. Adv Funct Mater 27:1703197. doi: 10.1002/adfm.201703197.
  • Tietjen GT, Bracaglia LG, Saltzman WM, et al. (2018). Focus on fundamentals: achieving effective nanoparticle targeting. Trends Mol Med 24:598–606. doi: 10.1016/j.molmed.2018.05.003.
  • Uccelli A, Moretta L, Pistoia V. (2008). Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–36. doi: 10.1038/nri2395.
  • Valcourt DM, Dang MN, Day ES. (2019). IR820-loaded PLGA nanoparticles for photothermal therapy of triple-negative breast cancer. J Biomed Mater Res A 107:1702–12. doi: 10.1002/jbm.a.36685.
  • Valencia PM, Hanewich-Hollatz MH, Gao W, et al. (2011). Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles. Biomaterials 32:6226–33. doi: 10.1016/j.biomaterials.2011.04.078.
  • Veiseh O, Gunn JW, Zhang M. (2010). Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304. doi: 10.1016/j.addr.2009.11.002.
  • Wang AZ, Langer R, Farokhzad OC. (2012). Nanoparticle delivery of cancer drugs. Annu Rev Med 63:185–98. doi: 10.1146/annurev-med-040210-162544.
  • Wang C, Wang S, Chen Y, et al. (2021). Membrane nanoparticles derived from ACE2-rich cells block SARS-CoV-2 infection. ACS Nano 15:6340–51. doi: 10.1021/acsnano.0c06836.
  • Wang D, Dong H, Li M, et al. (2018). Erythrocyte–cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano 12:5241–52. doi: 10.1021/acsnano.7b08355.
  • Wang F, Gao W, Thamphiwatana S, et al. (2015). Hydrogel retaining toxin-absorbing nanosponges for local treatment of methicillin-Resistant Staphylococcus aureus infection. Adv Mater 27:3437–43. doi: 10.1002/adma.201501071.
  • Wang H, Wu J, Williams GR, et al. (2019). Platelet-membrane-biomimetic nanoparticles for targeted antitumor drug delivery. J Nanobiotechnol 17:60. p. doi: 10.1186/s12951-019-0494-y.
  • Wang S, Wang R, Meng N, et al. (2020). Platelet membrane-functionalized nanoparticles with improved targeting ability and lower hemorrhagic risk for thrombolysis therapy. J Control Release 328:78–86. doi: 10.1016/j.jconrel.2020.08.030.
  • Wang Y, Zhang K, Li T, et al. (2021). Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications. Theranostics 11:164–80. doi: 10.7150/thno.47841.
  • Wang Y, Zhang K, Qin X, et al. (2019). Biomimetic nanotherapies: red blood cell based core–shell structured nanocomplexes for atherosclerosis management. Adv Sci (Weinh) 6:1900172. doi: 10.1002/advs.201900172.
  • Wei X, Gao J, Fang RH, et al. (2016). Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia. Biomaterials 111:116–23. doi: 10.1016/j.biomaterials.2016.10.003.
  • Wei X, Gao J, Wang F, et al. (2017). In situ capture of bacterial toxins for antivirulence vaccination. Adv Mater 29:1701644. doi: 10.1002/adma.201701644.
  • Wei X, Zhang G, Ran D, et al. (2018). T-cell-mimicking nanoparticles can neutralize HIV infectivity. Adv Mater 30:1802233. doi: 10.1002/adma.201802233.
  • Wright HL, Cox T, Moots RJ, et al. (2017). Neutrophil biomarkers predict response to therapy with tumor necrosis factor inhibitors in rheumatoid arthritis. J Leukoc Biol 101:785–95. doi: 10.1189/jlb.5A0616-258R.
  • Wypij M, Jędrzejewski T, Trzcińska-Wencel J, et al. (2021). Green synthesized silver nanoparticles: antibacterial and anticancer activities, biocompatibility, and analyses of surface-attached proteins. Front Microbiol 12:632505. doi: 10.3389/fmicb.2021.632505.
  • Xia Q, Zhang Y, Li Z, et al. (2019). Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm Sin B 9:675–89. doi: 10.1016/j.apsb.2019.01.011.
  • Xie W, Deng W-W, Zan M, et al. (2019). Cancer cell membrane camouflaged nanoparticles to realize starvation therapy together with checkpoint blockades for enhancing cancer therapy. ACS Nano 13:2849–57. doi: 10.1021/acsnano.8b03788.
  • Xu L, Wu S, Wang J. (2019). Cancer cell membrane–coated nanocarriers for homologous target inhibiting the growth of hepatocellular carcinoma. J Bioact Compat Polym 34:58–71. doi: 10.1177/0883911518819107.
  • Xuan M, Shao J, Dai L, et al. (2016). Macrophage cell membrane camouflaged Au nanoshells for in vivo prolonged circulation life and enhanced cancer photothermal therapy. ACS Appl Mater Interfaces 8:9610–8. doi: 10.1021/acsami.6b00853.
  • Xue Y, Zeng G, Cheng J, et al. (2021). Engineered macrophage membrane-enveloped nanomedicine for ameliorating myocardial infarction in a mouse model. Bioeng Transl Med 6:e10197. doi: 10.1002/btm2.10197.
  • Yang Q, Lai SK. (2015). Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip Rev: Nanomed Nanobiotechnol 7:655–77.
  • Ye X, Liang X, Chen Q, et al. (2019). Surgical tumor-derived personalized photothermal vaccine formulation for cancer immunotherapy. ACS Nano 13:2956–68. doi: 10.1021/acsnano.8b07371.
  • Yi Y, Yu M, Li W, et al. (2023). Vaccine-like nanomedicine for cancer immunotherapy. J Control Release 355:760–78. doi: 10.1016/j.jconrel.2023.02.015.
  • Yoo J-W, Chambers E, Mitragotri S. (2010). Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr Pharm Des 16:2298–307. doi: 10.2174/138161210791920496.
  • Yu K, Chen Y, Zhang L, et al. (2023). Cancer-erythrocyte membrane-mimicking Fe3O4 nanoparticles and DHJS for ferroptosis/immunotherapy synergism in tumors. ACS Appl Mater Interfaces 15:44689–710. doi: 10.1021/acsami.3c07379.
  • Yu X, Trase I, Ren M, et al. (2016). Design of nanoparticle-based carriers for targeted drug delivery. J Nanomater 2016:1–15. doi: 10.1155/2016/1087250.
  • Yu X, Xing G, Sheng S, et al. (2023). Neutrophil camouflaged stealth nanovehicle for photothermal-induced tumor immunotherapy by triggering pyroptosis. Adv Sci 10:2207456. doi: 10.1002/advs.202207456.
  • Yu Y, Cheng Q, Ji X, et al. (2022). Engineered drug-loaded cellular membrane nanovesicles for efficient treatment of postsurgical cancer recurrence and metastasis. Sci Adv 8:eadd3599. doi: 10.1126/sciadv.add3599.
  • Yuk SA, Kim H, Abutaleb NS, et al. (2021). Nanocapsules modify membrane interaction of polymyxin B to enable safe systemic therapy of Gram-negative sepsis. Sci Adv 7:eabj1577. doi: 10.1126/sciadv.abj1577.
  • Zhang C, Ma Y, Zhang J, et al. (2022). Modification of lipid-based nanoparticles: an efficient delivery system for nucleic acid-based immunotherapy. Molecules 27:1943. doi: 10.3390/molecules27061943.
  • Zhang C, Zhang P-Q, Guo S, et al. (2020). Application of biomimetic cell-derived nanoparticles with mannose modification as a novel vaccine delivery platform against teleost fish viral disease. ACS Biomater Sci Eng 6:6770–7. doi: 10.1021/acsbiomaterials.0c01302.
  • Zhang G, Campbell GR, Zhang Q, et al. (2020). CD4+ t cell-mimicking nanoparticles broadly neutralize hiv-1 and suppress viral replication through autophagy. MBio 11:e00903-20. doi: 10.1128/mBio.00903-20.
  • Zhang J, Gao W, Fang RH, et al. (2015). Synthesis of nanogels via cell membrane-templated polymerization. Small 11:4309–13. doi: 10.1002/smll.201500987.
  • Zhang L, Li R, Chen H, et al. (2017). Human cytotoxic T-lymphocyte membrane-camouflaged nanoparticles combined with low-dose irradiation: a new approach to enhance drug targeting in gastric cancer. Int J Nanomed 12:2129–42. doi: 10.2147/IJN.S126016.
  • Zhang N, Li M, Sun X, et al. (2018). NIR-responsive cancer cytomembrane-cloaked carrier-free nanosystems for highly efficient and self-targeted tumor drug delivery. Biomaterials 159:25–36. doi: 10.1016/j.biomaterials.2018.01.007.
  • Zhang Q, Dehaini D, Zhang Y, et al. (2018). Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat Nanotechnol 13:1182–90. doi: 10.1038/s41565-018-0254-4.
  • Zhang Q, Honko A, Zhou J, et al. (2020). Cellular nanosponges inhibit SARS-CoV-2 infectivity. Nano Lett 20:5570–4. doi: 10.1021/acs.nanolett.0c02278.
  • Zhang X, He S, Ding B, et al. (2020). Cancer cell membrane-coated rare earth doped nanoparticles for tumor surgery navigation in NIR-II imaging window. Chem Eng J 385:123959. doi: 10.1016/j.cej.2019.123959.
  • Zhang Y, Sun Y, Dong X, et al. (2022). A platelet intelligent vehicle with navigation for cancer photothermal-chemotherapy. ACS Nano 16:6359–71. doi: 10.1021/acsnano.2c00453.
  • Zhang Y, Zhang J, Chen W, et al. (2017). Erythrocyte membrane-coated nanogel for combinatorial antivirulence and responsive antimicrobial delivery against Staphylococcus aureus infection. J Controlled Release 263:185–91. doi: 10.1016/j.jconrel.2017.01.016.
  • Zhao Y, Xie R, Yodsanit N, et al. (2021). Hydrogen peroxide-responsive platelet membrane-coated nanoparticles for thrombus therapy. Biomater Sci 9:2696–708. doi: 10.1039/d0bm02125c.
  • Zhou H, Fan Z, Lemons PK, et al. (2016). A facile approach to functionalize cell membrane-coated nanoparticles. Theranostics 6:1012–22. doi: 10.7150/thno.15095.
  • Zhu D-M, Xie W, Xiao Y-S, et al. (2018). Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. Nanotechnology 29:084002. doi: 10.1088/1361-6528/aa9ca1.
  • Zhu J-Y, Zheng D-W, Zhang M-K, et al. (2016). Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett 16:5895–901. doi: 10.1021/acs.nanolett.6b02786.
  • Zhu Y-D, Chen S-P, Zhao H, et al. (2016). PPy@ MIL-100 nanoparticles as a pH-and near-IR-irradiation-responsive drug carrier for simultaneous photothermal therapy and chemotherapy of cancer cells. ACS Appl Mater Interfaces 8:34209–17. doi: 10.1021/acsami.6b11378.
  • Zolnik BS, González-Fernández A, Sadrieh N, et al. (2010). Minireview: nanoparticles and the immune system. Endocrinology 151:458–65. doi: 10.1210/en.2009-1082.