680
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The direct transfer approach for transcellular drug delivery

, , , , &
Article: 2288799 | Received 04 Sep 2023, Accepted 12 Nov 2023, Published online: 30 Nov 2023

References

  • Abounit S, Bousset L, Loria F, et al. (2016). Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes. Embo J 35:1–10. doi: 10.15252/embj.201593411.
  • Ariazi J, Benowitz A, De Biasi V, et al. (2017). Tunneling nanotubes and gap junctions-their role in long-range intercellular communication during development, health, and disease conditions. Front Mol Neurosci 10:333. doi: 10.3389/fnmol.2017.00333.
  • Atai NA, Balaj L, van Veen H, et al. (2013). Heparin blocks transfer of extracellular vesicles between donor and recipient cells. J Neurooncol 115:343–51. doi: 10.1007/s11060-013-1235-y.
  • Ayloo S, Gu C. (2019). Transcytosis at the blood-brain barrier. Curr Opin Neurobiol 57:32–8. doi: 10.1016/j.conb.2018.12.014.
  • Azzam EI, de Toledo SM, Gooding T, et al. (1998). Intercellular communication is involved in the bystander regulation of gene expression in human cells exposed to very low fluences of alpha particles. Radiat Res 150:497–504. doi: 10.2307/3579865.
  • Bonacquisti EE, Nguyen J. (2019). Connexin 43 (Cx43) in cancer: Implications for therapeutic approaches via gap junctions. Cancer Lett 442:439–44. doi: 10.1016/j.canlet.2018.10.043.
  • Brink PR, Valiunas V, Gordon C, et al. (2012). Can gap junctions deliver? Biochim Biophys Acta 1818:2076–81. doi: 10.1016/j.bbamem.2011.09.025.
  • Burt R, Dey A, Aref S, et al. (2019). Activated stromal cells transfer mitochondria to rescue acute lymphoblastic leukemia cells from oxidative stress. Blood 134:1415–29. doi: 10.1182/blood.2019001398.
  • Decrock E, Hoorelbeke D, Ramadan R, et al. (2017). Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment? Biochim Biophys Acta Mol Cell Res 1864:1099–120. doi: 10.1016/j.bbamcr.2017.02.007.
  • Ding Z, Sigdel K, Yang L, et al. (2020). Nanotechnology-based drug delivery systems for enhanced diagnosis and therapy of oral cancer. J Mater Chem B 8:8781–93. doi: 10.1039/d0tb00957a.
  • Doherty M, Osborne DG, Browning DL, et al. (2010). Anergic CD4+ T cells form mature immunological synapses with enhanced accumulation of c-Cbl and Cbl-b. J Immunol 184:3598–608. doi: 10.4049/jimmunol.0902285.
  • Domhan S, Ma L, Tai A, et al. (2011). Intercellular communication by exchange of cytoplasmic material via tunneling nano-tube like structures in primary human renal epithelial cells. PLoS One 6:e21283. doi: 10.1371/journal.pone.0021283.
  • Dubois F, Bénard M, Jean-Jacques B, et al. (2020). Investigating tunneling nanotubes in cancer cells: guidelines for structural and functional studies through cell imaging. Biomed Res Int 2020:2701345–16. doi: 10.1155/2020/2701345.
  • Egusquiaguirre SP, Igartua M, Hernández RM, et al. (2012). Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin Transl Oncol 14:83–93. doi: 10.1007/s12094-012-0766-6.
  • Epperla CP, Mohan N, Chang C-W, et al. (2015). Nanodiamond-mediated intercellular transport of proteins through membrane tunneling nanotubes. Small 11:6097–105. doi: 10.1002/smll.201502089.
  • Feine I, Pinkas I, Salomon Y, et al. (2012). Local oxidative stress expansion through endothelial cells–a key role for gap junction intercellular communication. PLoS One 7:e41633. doi: 10.1371/journal.pone.0041633.
  • Formicola B, D'Aloia A, Dal Magro R, et al. (2019). Differential exchange of multifunctional liposomes between glioblastoma cells and healthy astrocytes via tunneling nanotubes. Front Bioeng Biotechnol 7:403. doi: 10.3389/fbioe.2019.00403.
  • Forster T, Rausch V, Zhang Y, et al. (2014). Sulforaphane counteracts aggressiveness of pancreatic cancer driven by dysregulated Cx43-mediated gap junctional intercellular communication. Oncotarget 5:1621–34. doi: 10.18632/oncotarget.1764.
  • Franco S, Noureddine A, Guo J, et al. (2020). Direct transfer of mesoporous silica nanoparticles between macrophages and cancer cells. Cancers 12:2892. doi: 10.3390/cancers12102892.
  • Fung KYY, Fairn GD, Lee WL. (2018). Transcellular vesicular transport in epithelial and endothelial cells: challenges and opportunities. Traffic 19:5–18. doi: 10.1111/tra.12533.
  • Gadok AK, Zhao C, Meriwether AI, et al. (2018). The display of single-domain antibodies on the surfaces of connectosomes enables gap junction-mediated drug delivery to specific cell populations. Biochemistry 57:81–90. doi: 10.1021/acs.biochem.7b00688.
  • Gerdes H-H, Carvalho RN. (2008). Intercellular transfer mediated by tunneling nanotubes. Curr Opin Cell Biol 20:470–5. doi: 10.1016/j.ceb.2008.03.005.
  • Giepmans BNG, Adams SR, Ellisman MH, et al. (2006). The fluorescent toolbox for assessing protein location and function. Science 312:217–24. doi: 10.1126/science.1124618.
  • Gousset K, Schiff E, Langevin C, et al. (2009). Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11:328–36. doi: 10.1038/ncb1841.
  • Guo L, Zhang Y, Yang Z, et al. (2019). Tunneling nanotubular expressways for ultrafast and accurate M1 macrophage delivery of anticancer drugs to metastatic Ovarian Carcinoma. ACS Nano 13:1078–96. doi: 10.1021/acsnano.8b08872.
  • Han X, Wang X. (2021). Opportunities and challenges in tunneling nanotubes research: How far from clinical application? Int J Mol Sci 22:2306. doi: 10.3390/ijms22052306.
  • Hansen C, Angot E, Bergström A-L, et al. (2011). alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 121:715–25. doi: 10.1172/JCI43366.
  • Harilal S, Jose J, Parambi DGT, et al. (2020). Revisiting the blood-brain barrier: a hard nut to crack in the transportation of drug molecules. Brain Res Bull 160:121–40. doi: 10.1016/j.brainresbull.2020.03.018.
  • He B, Sui X, Yu B, et al. (2020). Recent advances in drug delivery systems for enhancing drug penetration into tumors. Drug Deliv 27:1474–90. doi: 10.1080/10717544.2020.1831106.
  • Huang L, Zhang J, Wu Z, et al. (2022). Revealing the structure and organization of intercellular tunneling nanotubes (TNTs) by STORM imaging. Nanoscale Adv 4:4258–62. doi: 10.1039/d2na00415a.
  • Huang R-P, Hossain MZ, Huang R, et al. (2001). Connexin 43 (cx43) enhances chemotherapy-induced apoptosis in human glioblastoma cells. Int J Cancer 92:130–8. doi: 10.1002/1097-0215(200102)9999:9999<::AID-IJC1165>3.0.CO;2-G.
  • Hui Y, Yi X, Hou F, et al. (2019). Role of nanoparticle mechanical pro­perties in cancer drug delivery. ACS Nano 13:7410–24. doi: 10.1021/acsnano.9b03924.
  • Jones JH, Minshall RD. (2020). Lung endothelial transcytosis. Comprehen Phys 10:491–508.
  • Keelan JA, Leong JW, Ho D, et al. (2015). Therapeutic and safety considerations of nanoparticle-mediated drug delivery in pregnancy. Nanomedicine 10:2229–47. doi: 10.2217/nnm.15.48.
  • Korenkova O, Pepe A, Zurzolo C. (2020). Fine intercellular connections in development: TNTs, cytonemes, or intercellular bridges? Cell Stress 4:30–43. doi: 10.15698/cst2020.02.212.
  • Lappalainen P, Kotila T, Jégou A, et al. (2022). Biochemical and mechanical regulation of actin dynamics. Nat Rev Mol Cell Biol 23:836–52. doi: 10.1038/s41580-022-00508-4.
  • Li A, Zhang T, Huang T, et al. (2021). Iron oxide nanoparticles promote Cx43-overexpression of mesenchymal stem cells for efficient suicide gene therapy during glioma treatment. Theranostics 11:8254–69. doi: 10.7150/thno.60160.
  • Li H, Wang C, He T, et al. (2019). Mitochondrial transfer from bone marrow mesenchymal stem cells to motor neurons in spinal cord injury rats via gap junction. Theranostics 9:2017–35. doi: 10.7150/thno.29400.
  • Li Z, Di C, Li S, et al. (2019). Smart nanotherapeutic targeting of tumor vasculature. Acc Chem Res 52:2703–12. doi: 10.1021/acs.accounts.9b00283.
  • Liang Y, Duan L, Lu J, et al. (2021). Engineering exosomes for targeted drug delivery. Theranostics 11:3183–95. doi: 10.7150/thno.52570.
  • Lim YS, Tang BL. (2012). Intercellular organelle trafficking by membranous nanotube connections: a possible new role in cellular rejuvenation? Cell Commun Adhes 19:39–44. doi: 10.3109/15419061.2012.712574.
  • Liu Y, Huo Y, Yao L, et al. (2019). Transcytosis of nanomedicine for tumor penetration. Nano Lett 19:8010–20. doi: 10.1021/acs.nanolett.9b03211.
  • Mao X-Y, Li Q-Q, Gao Y-F, et al. (2016). Gap junction as an intercellular glue: emerging roles in cancer EMT and metastasis. Cancer Lett 381:133–7. doi: 10.1016/j.canlet.2016.07.037.
  • Marzo L, Gousset K, Zurzolo C. (2012). Multifaceted roles of tunneling nanotubes in intercellular communication. Front Physiol 3:72. doi: 10.3389/fphys.2012.00072.
  • Miner CA, Giri TK, Meyer CE, et al. (2015). Acquisition of activation receptor ligand by trogocytosis renders NK cells hyporesponsive. J Immunol 194:1945–53. doi: 10.4049/jimmunol.1402408.
  • Miyake K, Karasuyama H. (2021). The role of trogocytosis in the modulation of immune cell functions. Cells 10:1255. doi: 10.3390/cells10051255.
  • Monaghan P, Clarke C, Perusinghe NP, et al. (1996). Gap junction distribution and connexin expression in human breast. Exp Cell Res 223:29–38. doi: 10.1006/excr.1996.0055.
  • Montero AJ, Adams B, Diaz-Montero CM, et al. (2011). Nab-paclitaxel in the treatment of metastatic breast cancer: a comprehensive review. Expert Rev Clin Pharm 4:329–34. doi: 10.1586/ecp.11.7.
  • Moscariello P, Raabe M, Liu W, et al. (2019). Unraveling in vivo brain transport of protein-coated fluorescent nanodiamonds. Small 15:e1902992. doi: 10.1002/smll.201902992.
  • Nasoni MG, Carloni S, Canonico B, et al. (2021). Melatonin reshapes the mitochondrial network and promotes intercellular mitochondrial transfer via tunneling nanotubes after ischemic-like injury in hippocampal HT22 cells. J Pineal Res 71:e12747. doi: 10.1111/jpi.12747.
  • Nielsen MS, et al. (2012). Gap junctions. Comprehen Physiol 2:1981–2035.
  • Niu X, Gupta K, Yang JT, et al. (2009). Physical transfer of membrane and cytoplasmic components as a general mechanism of cell-cell communication. J Cell Sci 122:600–10. doi: 10.1242/jcs.031427.
  • Noureddine A, Paffett ML, Franco S, et al. (2021). Endolysosomal mesoporous silica nanoparticle trafficking along microtubular highways. Pharmaceutics 14:56. doi: 10.3390/pharmaceutics14010056.
  • Onfelt B, Nedvetzki S, Benninger RKP, et al. (1950), 2006). Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J Immunol 177:8476–83. doi: 10.4049/jimmunol.177.12.8476.
  • Osborne DG, Wetzel SA. (2012). Trogocytosis results in sustained intracellular signaling in CD4(+) T cells. J Immunol 189:4728–39. doi: 10.4049/jimmunol.1201507.
  • Pasquier J, Galas L, Boulangé-Lecomte C, et al. (2012). Different modalities of intercellular membrane exchanges mediate cell-to-cell p-glycoprotein transfers in MCF-7 breast cancer cells. J Biol Chem 287:7374–87. doi: 10.1074/jbc.M111.312157.
  • Pinto G, Brou C, Zurzolo C. (2020). Tunneling nanotubes: the fuel of tumor progression? Trends Cancer 6:874–88. doi: 10.1016/j.trecan.2020.04.012.
  • Pinto G, Saenz-de-Santa-Maria I, Chastagner P, et al. (2021). Patient-derived glioblastoma stem cells transfer mitochondria through tunneling nanotubes in tumor organoids. Biochem J 478:21–39. doi: 10.1042/BCJ20200710.
  • Poupot M, Fournié JJ, Poupot R. (2008). Trogocytosis and killing of IL-4-polarized monocytes by autologous NK cells. J Leukoc Biol 84:1298–305. doi: 10.1189/jlb.0508278.
  • Reinisch KM, Prinz WA. (2021). Mechanisms of nonvesicular lipid transport. J Cell Biol 220(3):e202012058. doi: 10.1083/jcb.202012058.
  • Riond J, Elhmouzi J, Hudrisier D, et al. (2007). Capture of membrane components via trogocytosis occurs in vivo during both dendritic cells and target cells encounter by CD8(+) T cells. Scand J Immunol 66:441–50. doi: 10.1111/j.1365-3083.2007.01996.x.
  • Rostami J, Holmqvist S, Lindström V, et al. (2017). Human Astrocytes Transfer Aggregated Alpha-Synuclein via Tunneling Nanotubes. J Neurosci 37:11835–53. doi: 10.1523/JNEUROSCI.0983-17.2017.
  • Rustom A, Saffrich R, Markovic I, et al. (2004). Nanotubular highways for intercellular organelle transport. Science 303:1007–10. doi: 10.1126/science.1093133.
  • Sáenz-de-Santa-María I, Bernardo-Castiñeira C, Enciso E, et al. (2017). Control of long-distance cell-to-cell communication and autophagosome transfer in squamous cell carcinoma via tunneling nanotubes. Oncotarget 8:20939–60. doi: 10.18632/oncotarget.15467.
  • Scheiblich H, Dansokho C, Mercan D, et al. (2021). Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes. Cell 184:5089–106.e21. doi: 10.1016/j.cell.2021.09.007.
  • Sinyuk M, Mulkearns-Hubert EE, Reizes O, et al. (2018). Cancer connectors: Connexins, gap junctions, and communication. Front Oncol 8:646. doi: 10.3389/fonc.2018.00646.
  • Sisakhtnezhad S, Khosravi L. (2015). Emerging physiological and pathological implications of tunneling nanotubes formation between cells. Eur J Cell Biol 94:429–43. doi: 10.1016/j.ejcb.2015.06.010.
  • Soares AR, Martins-Marques T, Ribeiro-Rodrigues T, et al. (2015). Gap junctional protein Cx43 is involved in the communication between extracellular vesicles and mammalian cells. Sci Rep 5:13243. doi: 10.1038/srep13243.
  • Sun S, Xia Y, Liu J, et al. (2022). Real-time monitoring the interfacial dynamic processes at model cell membranes: taking cell penetrating peptide TAT as an example. J Colloid Interface Sci 609:707–17. doi: 10.1016/j.jcis.2021.11.076.
  • Taiarol L, Formicola B, Fagioli S, et al. (2021). The 3.0 cell communication: new insights in the usefulness of tunneling nanotubes for glioblastoma treatment. Cancers 13:4001. doi: 10.3390/cancers13164001.
  • Tang H, Ye H, Zhang H, et al. (2015). Wrapping of nanoparticles by the cell membrane: the role of interactions between the nanoparticles. Soft Matter 11:8674–83. doi: 10.1039/c5sm01460c.
  • Thayanithy V, O'Hare P, Wong P, et al. (2017). A transwell assay that excludes exosomes for assessment of tunneling nanotube-mediated intercellular communication. Cell Commun Signal 15:46. doi: 10.1186/s12964-017-0201-2.
  • Thuringer D, Jego G, Berthenet K, et al. (2016). Gap junction-mediated transfer of miR-145-5p from microvascular endothelial cells to colon cancer cells inhibits angiogenesis. Oncotarget 7:28160–8. doi: 10.18632/oncotarget.8583.
  • Trementozzi AN, Hufnagel S, Xu H, et al. (2020). Gap junction liposomes for efficient delivery of chemotherapeutics to solid tumors. ACS Biomater Sci Eng 6:4851–7. doi: 10.1021/acsbiomaterials.0c01047.
  • Trementozzi AN, Zhao C, Smyth H, et al. (2022). Gap junction-mediated delivery of polymeric macromolecules. ACS Biomater Sci Eng 8:1566–72. doi: 10.1021/acsbiomaterials.1c01459.
  • Uzana R, Eisenberg G, Sagi Y, et al. (2012). Trogocytosis is a gateway to characterize functional diversity in melanoma-specific CD8+ T cell clones. J Immunol 188:632–40. doi: 10.4049/jimmunol.1101429.
  • Vallabhaneni KC, Haller H, Dumler I. (2012). Vascular smooth muscle cells initiate proliferation of mesenchymal stem cells by mitochondrial transfer via tunneling nanotubes. Stem Cells Dev 21:3104–13. doi: 10.1089/scd.2011.0691.
  • Vance JE. (2015). Phospholipid synthesis and transport in mammalian cells. Traffic 16:1–18. doi: 10.1111/tra.12230.
  • Ventola CL. (2012). The nanomedicine revolution: part 2: current and future clinical applications. P T 37:582–91.
  • Veranic P, Lokar M, Schütz GJ, et al. (2008). Different types of cell-to-cell connections mediated by nanotubular structures. Biophys J 95:4416–25. doi: 10.1529/biophysj.108.131375.
  • Victoria GS, Zurzolo C. (2017). The spread of prion-like proteins by lysosomes and tunneling nanotubes: implications for neurodegenerative diseases. J Cell Biol 216:2633–44. doi: 10.1083/jcb.201701047.
  • Wang Y, Rozumalski L, Kilic O, et al. (2022). Engineering biomimetic trogocytosis with farnesylated chemically self-assembled nanorings. Biomacromolecules 23:5018–35. doi: 10.1021/acs.biomac.2c00837.
  • Wu Z, Yi X. (2021). Mechanics of cell interaction with intercellular nanoparticles: shape-dependent competition between two-membrane trapping and single-membrane wrapping. Extreme Mech Lett 46:101296. doi: 10.1016/j.eml.2021.101296.
  • Xu S, Ducroux A, Ponnurangam A, et al. (2016). cGAS-mediated innate immunity spreads intercellularly through HIV-1 env-induced membrane fusion sites. Cell Host Microbe 20:443–57. doi: 10.1016/j.chom.2016.09.003.
  • Yue T, Zhou H, Sun H, et al. (2019). Why are nanoparticles trapped at cell junctions when the cell density is high? Nanoscale 11:6602–9. doi: 10.1039/c9nr01024f.
  • Zhang K, et al. (2021). Intercellular transport of Tau protein and β-amyloid mediated by tunneling nanotubes. Am J Transl Res 13:12509–22.
  • Zhang L, Sharma S, Hershman JM, et al. (2006). Iodide sensitizes genetically modified non-small cell lung cancer cells to ionizing radiation. Cancer Gene Ther 13:74–81. doi: 10.1038/sj.cgt.7700875.
  • Zhang P, Wu G, Zhang D, et al. (2023). Mechanisms and strategies to enhance penetration during intravesical drug therapy for bladder cancer. J Control Release 354:69–79. doi: 10.1016/j.jconrel.2023.01.001.
  • Zhang P, Zhang H, Zheng B, et al. (2022). Combined self-assembled hendeca-arginine nanocarriers for effective targeted gene delivery to bladder cancer. Int J Nanomedicine 17:4433–48. doi: 10.2147/IJN.S379356.
  • Zhou M, Zheng M, Zhou X, et al. (2023). The roles of connexins and gap junctions in the progression of cancer. Cell Commun Signal 21:8. doi: 10.1186/s12964-022-01009-9.
  • Zhou Q, Li J, Xiang J, et al. (2022). Transcytosis-enabled active extravasation of tumor nanomedicine. Adv Drug Deliv Rev 189:114480. doi: 10.1016/j.addr.2022.114480.
  • Zhou Q, Shao S, Wang J, et al. (2019). Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy. Nat Nanotechnol 14:799–809. doi: 10.1038/s41565-019-0485-z.
  • Zhu Y-S, Tang K, Lv J. (2021). Peptide-drug conjugate-based novel molecular drug delivery system in cancer. Trends Pharmacol Sci 42:857–69. doi: 10.1016/j.tips.2021.07.001.
  • Zong L, Zhu Y, Liang R, et al. (2016). Gap junction mediated miRNA intercellular transfer and gene regulation: a novel mechanism for intercellular genetic communication. Sci Rep 6:19884. doi: 10.1038/srep19884.