874
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Polydopamine nanomaterials and their potential applications in the treatment of autoimmune diseases

, , , , , & show all
Article: 2289846 | Received 18 May 2023, Accepted 15 Nov 2023, Published online: 09 Dec 2023

References

  • Bao M, Wang K, Li J, et al. (2023). ROS Scavenging and inflammation-directed polydopamine nanoparticles regulate gut ­immunity and flora therapy in inflammatory bowel disease. Acta Biomater 161:1–18. doi: 10.1016/j.actbio.2023.02.026.
  • Bao X, Zhao J, Sun J, et al. (2018). Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano 12:8882–92. doi: 10.1021/acsnano.8b04022.
  • Chai H, Sang S, Luo Y, et al. (2022). Icariin-loaded sulfonated polyetheretherketone with osteogenesis promotion and osteoclastogenesis inhibition properties via immunomodulation for advanced osseointegration. J Mater Chem B 10:3531–40. doi: 10.1039/d1tb02802b.
  • Chen F, An P, Liu L, et al. (2021). A polydopamine-gated biodegradable cascade nanoreactor for pH-triggered and photothermal-enhanced tumor-specific nanocatalytic therapy. Nanoscale 13:15677–88. doi: 10.1039/d1nr03496k.
  • Chen J, Hou S, Liang Q, et al. (2022). Localized degradation of neutrophil extracellular traps by photoregulated enzyme delivery for cancer ­immunotherapy and metastasis suppression. ACS Nano 16:2585–97. doi: 10.1021/acsnano.1c09318.
  • Chen MW, Lu QJ, Chen YJ, et al. (2022). NIR-PTT/ROS-scavenging/oxygen-enriched synergetic therapy for rheumatoid arthritis by a pH-responsive hybrid CeO(2)-ZIF-8 coated with polydopamine. ACS Biomater Sci Eng 8:3361–76. doi: 10.1021/acsbiomaterials.2c00592.
  • Chen W, Fu M, Zhu X, et al. (2019). Protein recognition by polydopamine-based molecularly imprinted hollow spheres. Biosens Bioelectron 142:111492. doi: 10.1016/j.bios.2019.111492.
  • Chen W, Song Y, Bai S, et al. (2023). Cloaking mesoporous polydopamine with bacterial membrane vesicles to amplify local and systemic antitumor immunity. ACS Nano 17:7733–49. doi: 10.1021/acsnano.3c00363.
  • Chen Y, Wang Y, Jiang X, et al. (2022). Dimethylamino group modified polydopamine nanoparticles with positive charges to scavenge cell-free DNA for rheumatoid arthritis therapy. Bioact Mater 18:409–20. doi: 10.1016/j.bioactmat.2022.03.028.
  • Cho S, Park W, Kim DH. (2017). Silica-coated metal chelating-melanin nanoparticles as a dual-modal contrast enhancement imaging and therapeutic agent. ACS Appl Mater Interfaces 9:101–11. doi: 10.1021/acsami.6b11304.
  • Choi H, Jeong SH, Kim TY, et al. (2022). Bioinspired urease-powered micromotor as an active oral drug delivery carrier in stomach. Bioact Mater 9:54–62. doi: 10.1016/j.bioactmat.2021.08.004.
  • Cui J, Wang Y, Postma A, et al. (2010). Monodisperse polymer capsules: tailoring size, shell thickness, and hydrophobic cargo loading via emulsion templating. Adv Funct Materials 20:1625–31. doi: 10.1002/adfm.201000209.
  • Deng H, Zhang J, Yang Y, et al. (2022). Chemodynamic and photothermal combination therapy based on dual-modified metal-organic framework for inducing tumor ferroptosis/pyroptosis. ACS Appl Mater Interfaces 14:24089–101. doi: 10.1021/acsami.2c00574.
  • Dong Z, Feng L, Hao Y, et al. (2018). Synthesis of hollow biomineralized CaCO(3)-polydopamine nanoparticles for multimodal imaging-guided cancer photodynamic therapy with reduced skin photosensitivity. J Am Chem Soc 140:2165–78. doi: 10.1021/jacs.7b11036.
  • Du X, Li L, Li J, et al. (2014). UV-triggered dopamine polymerization: control of polymerization, surface coating, and photopatterning. Adv Mater 26:8029–33. doi: 10.1002/adma.201403709.
  • Fugger L, Jensen LT, Rossjohn J. (2020). Challenges, progress, and prospects of developing therapies to treat autoimmune diseases. Cell 181:63–80. doi: 10.1016/j.cell.2020.03.007.
  • Gong L, Zhang Y, Zhao J, et al. (2022). All-in-one biomimetic nanoplatform based on hollow polydopamine nanoparticles for synergistically enhanced radiotherapy of colon cancer. Small 18:e2107656. doi: 10.1002/smll.202205198.
  • Gu GE, Park CS, Cho HJ, et al. (2018). Fluorescent polydopamine nanoparticles as a probe for zebrafish sensory hair cells targeted in vivo imaging. Sci Rep 8:4393. doi: 10.1038/s41598-018-22828-2.
  • Guan H, Xu Z, Du G, et al. (2023). A mesoporous polydopamine-derived nanomedicine for targeted and synergistic treatment of inflammatory bowel disease by pH-Responsive drug release and ROS scavenging. Mater Today Bio 19:100610. doi: 10.1016/j.mtbio.2023.100610.
  • Guo T, Kang X, Ren S, et al. (2021). Construction of a nano-controlled release methotrexate delivery system for the treatment of rheumatoid arthritis by local percutaneous administration. Nanomaterials 11:2812. doi: 10.3390/nano11112812.
  • Han J, Wang J, Shi H, et al. (2023). Ultra-small polydopamine nanomedicine-enabled antioxidation against senescence. Mater Today Bio 19:100544. doi: 10.1016/j.mtbio.2023.100544.
  • Han L, Wang M, Li P, et al. (2018). Mussel-inspired tissue-adhesive hydrogel based on the polydopamine-chondroitin sulfate complex for growth-factor-free cartilage regeneration. ACS Appl Mater Interfaces 10:28015–26. doi: 10.1021/acsami.8b05314.
  • Han S, Wang W, Wang S, et al. (2021). Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes. Theranostics 11:2892–916. doi: 10.7150/thno.50928.
  • Hong S, Na YS, Choi S, et al. (2012). Non-covalent self-assembly and ­covalent polymerization co-contribute to polydopamine formation. Adv Funct Materials 22:4711–7. doi: 10.1002/adfm.201201156.
  • Huang Y, Li Y, Hu Z, et al. (2017). Mimicking melanosomes: polydopamine nanoparticles as artificial microparasols. ACS Cent Sci 3:564–9. doi: 10.1021/acscentsci.6b00230.
  • Jiang P, Choi A, Swindle-Reilly KE. (2020). Controlled release of anti-VEGF by redox-responsive polydopamine nanoparticles. Nanoscale 12:17298–311. doi: 10.1039/d0nr03710a.
  • Jin L, Yuan F, Chen C, et al. (2019). Degradation products of polydopamine restrained inflammatory response of LPS-stimulated macrophages through mediation TLR-4-MYD88 dependent signaling pathways by antioxidant. Inflammation 42:658–71. doi: 10.1007/s10753-018-0923-3.
  • Kaya K, Jockusch S, Yagci Y. (2021). Mussel-inspired coatings by photoinduced electron-transfer reactions: photopolymerization of dopamine under UV, visible, and daylight under oxygen-free conditions. Macromolecules 54:5991–9. doi: 10.1021/acs.macromol.1c00946.
  • Kim H, Yuk SA, Dieterly AM, et al. (2021). Nanosac, a noncationic and soft polyphenol nanocapsule, enables systemic delivery of siRNA to solid tumors. ACS Nano 15:4576–93. doi: 10.1021/acsnano.0c08694.
  • Kong XJ, Wu S, Chen TT, et al. (2016). MnO2-induced synthesis of fluorescent polydopamine nanoparticles for reduced glutathione sensing in human whole blood. Nanoscale 8:15604–10. doi: 10.1039/c6nr04777g.
  • Lee KK, Lee JH, Lee SC, et al. (2022). MnCO(3)-mineralized polydopamine nanoparticles as an activatable theranostic agent for dual-modality imaging-guided photothermal therapy of cancers. Theranostics 12:6762–78. doi: 10.7150/thno.77060.
  • Lemaster JE, Jeevarathinam AS, Kumar A, et al. (2019). Synthesis of ultrasmall synthetic melanin nanoparticles by UV irradiation in acidic and neutral conditions. ACS Appl Bio Mater 2:4667–74. doi: 10.1021/acsabm.9b00747.
  • Li B, Liu F, Ye J, et al. (2022). Regulation of macrophage polarization through periodic photo-thermal treatment to facilitate osteogenesis. Small 18:e2202691. doi: 10.1002/smll.202202691.
  • Li C, Liu SY, Zhang M, et al. (2022). Sustained release of exosomes loaded into polydopamine-modified chitin conduits promotes peripheral nerve regeneration in rats. Neural Regen Res 17:2050–7. doi: 10.4103/1673-5374.335167.
  • Li D, Xiong Q, Liu W, et al. (2022). Nanozymatic magnetic nanomixers for enzyme immobilization and multiplexed detection of metabolic disease biomarkers. Biosens Bioelectron 219:114795. doi: 10.1016/j.bios.2022.114795.
  • Li F, Yu Y, Wang Q, et al. (2018). Polymerization of dopamine catalyzed by laccase: comparison of enzymatic and conventional methods. Enzyme Microb Technol 119:58–64. doi: 10.1016/j.enzmictec.2018.09.003.
  • Li J, Hou W, Lin S, et al. (2022). Polydopamine nanoparticle-mediated ­dopaminergic immunoregulation in colitis. Adv Sci 9:e2104006.
  • Li J, Qiu H, Gong H, et al. (2021). Broad-spectrum reactive oxygen species scavenging and activated macrophage-targeting microparticles ameliorate inflammatory bowel disease. Biomacromolecules 22:3107–18. doi: 10.1021/acs.biomac.1c00551.
  • Li J, Xia Q, Guo H, et al. (2022). Decorating bacteria with triple immune nanoactivators generates tumor-resident living immunotherapeutics. Angew Chem Int Ed Engl 61:e202202409. doi: 10.1002/anie.202202409.
  • Li M, Wang Y, Han X, et al. (2022). Multifunctional polydopamine-based nanoparticles for dual-mode imaging guided targeted therapy of lupus nephritis. Pharmaceutics 14:1988. doi: 10.3390/pharmaceutics14101988.
  • Li N, Wang HB, Thia L, et al. (2015). Enzymatic-reaction induced production of polydopamine nanoparticles for sensitive and visual sensing of urea. Analyst 140:449–55. doi: 10.1039/c4an01900h.
  • Li Y, Yang L, Hou Y, et al. (2022). Polydopamine-mediated graphene oxide and nanohydroxyapatite-incorporated conductive scaffold with an immunomodulatory ability accelerates periodontal bone regeneration in diabetes. Bioact Mater 18:213–27. doi: 10.1016/j.bioactmat.2022.03.021.
  • Liu H, Qu X, Tan H, et al. (2019). Role of polydopamine’s redox-activity on its pro-oxidant, radical-scavenging, and antimicrobial activities. Acta Biomater 88:181–96. doi: 10.1016/j.actbio.2019.02.032.
  • Liu S, Fu J, Wang M, et al. (2016). Magnetically separable and recyclable Fe3O4-polydopamine hybrid hollow microsphere for highly efficient peroxidase mimetic catalysts. J Colloid Interface Sci 469:69–77. doi: 10.1016/j.jcis.2016.02.011.
  • Liu S, Zhang C, Zhou Y, et al. (2023). MRI-visible mesoporous polydopamine nanoparticles with enhanced antioxidant capacity for osteoarthritis therapy. Biomaterials 295:122030. doi: 10.1016/j.biomaterials.2023.122030.
  • Liu Y, Choi CKK, Hong H, et al. (2021). Dopamine receptor-mediated binding and cellular uptake of polydopamine-coated nanoparticles. ACS Nano 15:13871–90. doi: 10.1021/acsnano.1c06081.
  • Liu Y, Zhang M, Wang X, et al. (2023). Dressing bacteria with a hybrid immunoactive nanosurface to elicit dual anticancer and antiviral ­immunity. Adv Mater 35:e2210949.
  • Lou X, Hu Y, Zhang H, et al. (2021). Polydopamine nanoparticles attenuate retina ganglion cell degeneration and restore visual function after optic nerve injury. J Nanobiotechnology 19:436. doi: 10.1186/s12951-021-01199-3.
  • Lv L, Cheng H, Wang Z, et al. (2022). “Carrier-drug" layer-by-layer hybrid assembly of biocompatible polydopamine nanoparticles to amplify photo-chemotherapy. Nanoscale 14:13740–54. doi: 10.1039/d2nr03200g.
  • Ma H, Han H, Zhao X, et al. (2023). Engineering multifunctional polyether ether ketone implant: mechanics-adaptability, biominerialization, ­immunoregulation, anti-infection, osteointegration, and osteogenesis. Adv Healthc Mater 12:e2202799. doi: 10.1002/adhm.202202799.
  • Ma J, Li J, Wang X, et al. (2023). GDNF-loaded polydopamine nanoparticles-based anisotropic scaffolds promote spinal cord repair by modulating inhibitory microenvironment. Adv Healthc Mater 12:e2202377.
  • Ma L, Huang S, He S, et al. (2020). Polydopamine-coated downconversion nanoparticle as an efficient dual-modal near-infrared-II fluorescence and photoacoustic contrast agent for non-invasive visualization of gastrointestinal tract in vivo. Biosens Bioelectron 151:112000. doi: 10.1016/j.bios.2019.112000.
  • Ma X, Guo S, Ruan S, et al. (2022). HACE2-exosome-based nano-bait for concurrent SARS-CoV-2 trapping and antioxidant therapy. ACS Appl Mater Interfaces 14:4882–91. doi: 10.1021/acsami.1c19541.
  • Mao W, Hu C, Zheng H, et al. (2020). A functionalized polydopamine theranostic nanoprobe for efficient imaging of miRNA-21 and in vivo synergetic cancer therapy. Mol Ther Nucleic Acids 22:27–37. doi: 10.1016/j.omtn.2020.08.007.
  • Ma Y, Su Z, Zhou L, et al. (2022). Biodegradable metal-organic-framework-gated organosilica for tumor-microenvironment-unlocked glutathione-depletion-enhanced synergistic therapy. Adv Mater 34:e2107560.
  • Meng J, Wei K, Xie S, et al. (2023). Pyroelectric Janus nanomotors to promote cell internalization and synergistic tumor therapy. J Control Release 357:342–55. doi: 10.1016/j.jconrel.2023.04.007.
  • Meng Z, Fu B, Yang Z, et al. (2023). Polydopamine-coated thalidomide nanocrystals promote DSS-induced murine colitis recovery through macrophage M2 polarization together with the synergistic anti-inflammatory and anti-angiogenic effects. Int J Pharm 630:122376. doi: 10.1016/j.ijpharm.2022.122376.
  • Mengdi Z, Jiayi L, Canfeng L, et al. (2022). Surface modification of polyetheretherketone (PEEK) to enhance osteointegration by grafting strontium Eucommia ulmoides polysaccharides. Int J Biol Macromol 211:230–7. doi: 10.1016/j.ijbiomac.2022.05.048.
  • Mou C, Yang Y, Bai Y, et al. (2019). Hyaluronic acid and polydopamine functionalized phase change nanoparticles for ultrasound imaging-guided photothermal-chemotherapy. J Mater Chem B 7:1246–57. doi: 10.1039/c8tb03056a.
  • Nguyen TT, Pham TT, Nguyen HT, et al. (2019). Engineering "cell-particle hybrids" of pancreatic islets and bioadhesive FK506-loaded polymeric microspheres for local immunomodulation in xenogeneic islet transplantation. Biomaterials 221:119415. doi: 10.1016/j.biomaterials.2019.119415.
  • Nirmal GR, Lin ZC, Lin CH, et al. (2022). Polydopamine/IR820 nanoparticles as topical phototheranostics for inhibiting psoriasiform lesions through dual photothermal and photodynamic treatments. Biomater Sci 10:6172–89. doi: 10.1039/d2bm00835a.
  • Pan W, Li Z, Qiu S, et al. (2022). Octahedral Pt-MOF with Au deposition for plasmonic effect and Schottky junction enhanced hydrogenothermal therapy of rheumatoid arthritis. Mater Today Bio 13:100214. doi: 10.1016/j.mtbio.2022.100214.
  • Park J, Le QV, Wu Y, et al. (2023). Tolerogenic nanovaccine for prevention and treatment of autoimmune encephalomyelitis. Adv Mater 35:e2202670.
  • Pozy E, Savla C, Palmer AF. (2023). Photocatalytic synthesis of a polydopamine-coated acellular mega-hemoglobin as a potential oxygen therapeutic with antioxidant properties. Biomacromolecules 24:2022–9. doi: 10.1021/acs.biomac.2c01420.
  • Qiang W, Li W, Li X, et al. (2014). Bioinspired polydopamine nanospheres: a superquencher for fluorescence sensing of biomolecules. Chem Sci 5:3018–24. doi: 10.1039/C4SC00085D.
  • Qiu J, Shi Y, Xia Y. (2021). Polydopamine nanobottles with photothermal capability for controlled release and related applications. Adv Mater 33:e2104729.
  • Rykova E, Sizikov A, Roggenbuck D, et al. (2017). Circulating DNA in rheumatoid arthritis: pathological changes and association with clinically used serological markers. Arthritis Res Ther 19:85. doi: 10.1186/s13075-017-1295-z.
  • Shang B, Zhang X, Ji R, et al. (2020). Preparation of colloidal polydopamine/Au hollow spheres for enhanced ultrasound contrast imaging and photothermal therapy. Mater Sci Eng C Mater Biol Appl 106:110174. doi: 10.1016/j.msec.2019.110174.
  • Shao L, Li Y, Huang F, et al. (2020). Complementary autophagy inhibition and glucose metabolism with rattle-structured polydopamine@mesoporous silica nanoparticles for augmented low-temperature photothermal therapy and in vivo photoacoustic imaging. Theranostics 10:7273–86. doi: 10.7150/thno.44668.
  • Sharifian A, Varshosaz J, Aliomrani M, et al. (2023). Nose to brain delivery of ibudilast micelles for treatment of multiple sclerosis in an experimental autoimmune encephalomyelitis animal model. Int J Pharm 638:122936. doi: 10.1016/j.ijpharm.2023.122936.
  • Shen H, Jin L, Zheng Q, et al. (2023). Synergistically targeting synovium STING pathway for rheumatoid arthritis treatment. Bioact Mater 24:37–53. doi: 10.1016/j.bioactmat.2022.12.001.
  • Song M, Xing J, Cai H, et al. (2023). Pomegranate-bionic encapsulating horseradish peroxidase using dopamine flexible scaffold-coated multishell porous ZIF-8 to enhance immunochromatographic diagnosis. ACS Nano 17:10748–59. doi: 10.1021/acsnano.3c02164.
  • Sun X, Jiao X, Wang Z, et al. (2023). Polydopamine-coated 3D-printed β-tricalcium phosphate scaffolds to promote the adhesion and osteogenesis of BMSCs for bone-defect repair: mRNA transcriptomic ­sequencing analysis. J Mater Chem B 11:1725–38. doi: 10.1039/d2tb02280j.
  • Tan F, Zhai M, Meng X, et al. (2021). Hybrid peptide-molecularly imprinted polymer interface for electrochemical detection of vancomycin in complex matrices. Biosens Bioelectron 184:113220. doi: 10.1016/j.bios.2021.113220.
  • Tao J, Yang P, Gao M, et al. (2023). Reversing inflammatory microenvironment by a single intra-articular injection of multi-stimulus responsive lipogel to relieve rheumatoid arthritis and promote joint repair. Mater Today Bio 20:100622. doi: 10.1016/j.mtbio.2023.100622.
  • Vidallon MLP, Salimova E, Crawford SA, et al. (2022). Enhanced ­photoacoustic imaging in tissue-mimicking phantoms using polydopamine-shelled perfluorocarbon emulsion droplets. Ultrason Sonochem 86:106041. doi: 10.1016/j.ultsonch.2022.106041.
  • Wan L, Cao Y, Cheng C, et al. (2023). Biomimetic, pH-responsive nanoplatforms for cancer multimodal imaging and photothermal immunotherapy. ACS Appl Mater Interfaces 15:1784–97. doi: 10.1021/acsami.2c16667.
  • Wang H, Lin C, Zhang X, et al. (2019). Mussel-inspired polydopamine coating: a general strategy to enhance osteogenic differentiation and osseointegration for diverse implants. ACS Appl Mater Interfaces 11:7615–25. doi: 10.1021/acsami.8b21558.
  • Wang L, Wang FS, Gershwin ME. (2015). Human autoimmune diseases: a comprehensive update. J Intern Med 278:369–95. doi: 10.1111/joim.12395.
  • Wang L, Wang X, Yang F, et al. (2021). Systemic antiviral immunization by virus-mimicking nanoparticles-decorated erythrocytes. Nano Today 40:101280. doi: 10.1016/j.nantod.2021.101280.
  • Wang L, Wang Z, Pan Y, et al. (2022). Polycatechol-derived mesoporous polydopamine nanoparticles for combined ROS scavenging and gene interference therapy in inflammatory bowel disease. ACS Appl Mater Interfaces 14:19975–87. doi: 10.1021/acsami.1c25180.
  • Wang S, Lin J, Wang Z, et al. (2017). Core-satellite polydopamine-gadolinium-metallofullerene nanotheranostics for multimodal imaging guided combination cancer therapy. Adv Mater 29:1701013. doi: 10.1002/adma.201701013.
  • Wei Y, Nie Y, Han Z, et al. (2021). Au@polydopamine nanoparticles/tocilizumab composite as efficient scavengers of oxygen free radicals for improving the treatment of rheumatoid arthritis. Mater Sci Eng C Mater Biol Appl 118:111434. doi: 10.1016/j.msec.2020.111434.
  • Wu B, Sun Z, Wu J, et al. (2021). Nanoparticle-stabilized oxygen microcapsules prepared by interfacial polymerization for enhanced oxygen delivery. Angew Chem Int Ed Engl 60:9284–9. doi: 10.1002/anie.202100752.
  • Wu C, Cheng J, Li W, et al. (2021). Programmable polymeric microneedles for combined chemotherapy and antioxidative treatment of rheumatoid arthritis. ACS Appl Mater Interfaces 13:55559–68. doi: 10.1021/acsami.1c17375.
  • Wu M, Zhang Y, Wu P, et al. (2022). Mussel-inspired multifunctional surface through promoting osteogenesis and inhibiting osteoclastogenesis to facilitate bone regeneration. NPJ Regen Med 7:29. doi: 10.1038/s41536-022-00224-9.
  • Wu Q, Niu M, Chen X, et al. (2018). Biocompatible and biodegradable zeolitic imidazolate framework/polydopamine nanocarriers for dual stimulus triggered tumor thermo-chemotherapy. Biomaterials 162:132–43. doi: 10.1016/j.biomaterials.2018.02.022.
  • Wu S, Shuai Y, Qian G, et al. (2023). A spatiotemporal drug release scaffold with antibiosis and bone regeneration for osteomyelitis. J Adv Res 54:239–49. doi: 10.1016/j.jare.2023.01.019.
  • Wu Y, Zhang X, Tan B, et al. (2022). Near-infrared light control of GelMA/PMMA/PDA hydrogel with mild photothermal therapy for skull regeneration. Biomater Adv 133:112641. doi: 10.1016/j.msec.2022.112641.
  • Xie L, Pang X, Yan X, et al. (2020). Photoacoustic imaging-trackable magnetic microswimmers for pathogenic bacterial infection treatment. ACS Nano 14:2880–93. doi: 10.1021/acsnano.9b06731.
  • Xie Z, Duo Y, Fan T, et al. (2022). Light-induced tumor theranostics based on chemical-exfoliated borophene. Light Sci Appl 11:324. doi: 10.1038/s41377-022-00980-9.
  • Xiong Y, Wang Z, Wang Q, et al. (2022). Tumor-specific activatable biopolymer nanoparticles stabilized by hydroxyethyl starch prodrug for self-amplified cooperative cancer therapy. Theranostics 12:944–62. doi: 10.7150/thno.67572.
  • Xu D, Hu J, Pan X, et al. (2021). Enzyme-powered liquid metal nanobots endowed with multiple biomedical functions. ACS Nano 15:11543–54. doi: 10.1021/acsnano.1c01573.
  • Xu F, Li M, Que Z, et al. (2023). Combined chemo-immuno-photothermal therapy based on ursolic acid/astragaloside IV-loaded hyaluronic acid-modified polydopamine nanomedicine inhibiting the growth and metastasis of non-small cell lung cancer. J Mater Chem B 11:3453–72. doi: 10.1039/d2tb02328h.
  • Xu H, Liu X, Wang D. (2011). Interfacial basicity-guided formation of polydopamine hollow capsules in pristine O/W emulsions – toward understanding of emulsion template roles. Chem Mater 23:5105–10. doi: 10.1021/cm2028417.
  • Xue H, Zhang Z, Lin Z, et al. (2022). Enhanced tissue regeneration through immunomodulation of angiogenesis and osteogenesis with a multifaceted nanohybrid modified bioactive scaffold. Bioact Mater 18:552–68. doi: 10.1016/j.bioactmat.2022.05.023.
  • Xue J, Zhu Y, Bai S, et al. (2022). Nanoparticles with rough surface improve the therapeutic effect of photothermal immunotherapy against melanoma. Acta Pharm Sin B 12:2934–49. doi: 10.1016/j.apsb.2021.11.020.
  • Yan M, Zhu L, Wu S, et al. (2022). ROS responsive polydopamine nanoparticles to relieve oxidative stress and inflammation for ameliorating acute inflammatory bowel. Biomater Adv 142:213126. doi: 10.1016/j.bioadv.2022.213126.
  • Yan S, Zeng X, Tang Y, et al. (2019). Activating antitumor immunity and antimetastatic effect through polydopamine-encapsulated core-shell upconversion nanoparticles. Adv Mater 31:e1905825.
  • Yang H, Le QV, Shim G, et al. (2020). Molecular engineering of antibodies for site-specific conjugation to lipid polydopamine hybrid nanoparticles. Acta Pharm Sin B 10:2212–26. doi: 10.1016/j.apsb.2020.07.006.
  • Yang YH, Liu CH, Liang YH, et al. (2013). Hollow mesoporous hydroxyapatite nanoparticles (hmHANPs) with enhanced drug loading and pH-responsive release properties for intracellular drug delivery. J Mater Chem B 1:2447–50. doi: 10.1039/c3tb20365d.
  • Yeroslavsky G, Richman M, Dawidowicz LO, et al. (2013). Sonochemically produced polydopamine nanocapsules with selective antimicrobial ­activity. Chem Commun 49:5721–3. doi: 10.1039/c3cc37762h.
  • Yim W, Takemura K, Zhou J, et al. (2022). Enhanced photoacoustic detection of heparin in whole blood via melanin nanocapsules carrying molecular agents. ACS Nano 16:683–93. doi: 10.1021/acsnano.1c08178.
  • Yu W, Sun J, Wang X, et al. (2022). Boosting cancer immunotherapy via the convenient A2AR inhibition using a tunable nanocatalyst with light-enhanced activity. Adv Mater 34:e2106967. doi: 10.1002/adma.202106967.
  • Zeng AP, Menzel K, Deckwer WD. (2000). Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: II. Analysis of metabolic rates and pathways under oscillation and steady-state conditions. Biotechnol Bioeng 52:561–71. doi: 10.1002/(SICI)1097-0290(19961205)52:5<561::AID-BIT3>3.0.CO;2-H.
  • Zhai J, Zhao M, Cao X, et al. (2018). Metal-ion-responsive bionanocomposite for selective and reversible enzyme inhibition. J Am Chem Soc 140:16925–8. doi: 10.1021/jacs.8b10848.
  • Zhang L, Shi J, Jiang Z, et al. (2011a). Facile preparation of robust microcapsules by manipulating metal-coordination interaction between biomineral layer and bioadhesive layer. ACS Appl Mater Interfaces 3:597–605. doi: 10.1021/am101184h.
  • Zhang L, Shi J, Jiang Z, et al. (2011b). Bioinspired preparation of polydopamine microcapsule for multienzyme system construction. Green Chem 13:300–6. doi: 10.1039/C0GC00432D.
  • Zhao H, Liu Z, Wei Y, et al. (2022). NIR-II light leveraged dual drug synthesis for orthotopic combination therapy. ACS Nano 16:20353–63. doi: 10.1021/acsnano.2c06314.
  • Zhao T, Chen L, Liu M, et al. (2023). Emulsion-oriented assembly for Janus double-spherical mesoporous nanoparticles as biological logic gates. Nat Chem 15:832–40. doi: 10.1038/s41557-023-01183-4.
  • Zheng P, Ding B, Shi R, et al. (2021). A multichannel Ca(2+) nanomodulator for multilevel mitochondrial destruction-mediated cancer therapy. Adv Mater 33:e2007426.
  • Zheng Y, Wu G, Chen L, et al. (2021). Neuro-regenerative imidazole-functionalized GelMA hydrogel loaded with hAMSC and SDF-1α promote stem cell differentiation and repair focal brain injury. Bioact Mater 6:627–37. doi: 10.1016/j.bioactmat.2020.08.026.
  • Zhou J, Xu M, Jin Z, et al. (2021). Versatile polymer nanocapsules via ­redox competition. Angew Chem Int Ed Engl 60:26357–62. doi: 10.1002/anie.202110829.
  • Zhou T, Yan L, Xie C, et al. (2019). A mussel-inspired persistent ROS-scavenging, electroactive and osteoinductive scaffold based on electrochemical-driven in situ nanoassembly. Small 15:e1805440.
  • Zhou ZR, Chen X, Lv J, et al. (2022). A plasmonic nanoparticle-embedded polydopamine substrate for fluorescence detection of extracellular vesicle biomarkers in serum and urine from patients with systemic lupus erythematosus. Talanta 247:123620. doi: 10.1016/j.talanta.2022.123620.
  • Zhu M, Shi Y, Shan Y, et al. (2021). Recent developments in mesoporous polydopamine-derived nanoplatforms for cancer theranostics. J Nanobiotechnology 19:387. doi: 10.1186/s12951-021-01131-9.
  • Zhu TT, Wang H, Gu HW, et al. (2023). Melanin-like polydopamine nanoparticles mediating anti-inflammatory and rescuing synaptic loss for inflammatory depression therapy. J Nanobiotechnology 21:52. doi: 10.1186/s12951-023-01807-4.
  • Zhuang B, Chen T, Huang Y, et al. (2022). Chemo-photothermal immunotherapy for eradication of orthotopic tumors and inhibition of metastasis by intratumoral injection of polydopamine versatile ­hydrogels. Acta Pharm Sin B 12:1447–59. doi: 10.1016/j.apsb.2021.09.001.