1,797
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in the use of local anesthetic extended-release systems in pain management

, , , , , & show all
Article: 2296349 | Received 13 Jul 2023, Accepted 15 Nov 2023, Published online: 21 Dec 2023

References

  • Abd-Elsayed A, Deer TR. (2019). Different types of pain. In: Abd-Elsayed A, ed. Pain. Cham: Springer, 1–18.
  • Abu-Dief AM, Salaheldeen M, El-Dabea T. (2021). Recent advances in development of gold nanoparticles for drug delivery systems. J Modern Nanotechnol 1:1. doi: 10.53964/jmn.2021001.
  • Al Homsi R, Eltahir S, Jagal J, et al. (2022). Thermosensitive injectable graphene oxide/chitosan-based nanocomposite hydrogels for controlling the in vivo release of bupivacaine hydrochloride. Int J Pharm 621:121786. doi: 10.1016/j.ijpharm.2022.121786.
  • Alejo T, Andreu V, Mendoza G, et al. (2018). Controlled release of bupivacaine using hybrid thermoresponsive nanoparticles activated via photothermal heating. J Colloid Interface Sci 523:234–44. doi: 10.1016/j.jcis.2018.03.107.
  • Ali A, Ahmed S. (2018). A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–86. doi: 10.1016/j.ijbiomac.2017.12.078.
  • Alijanipour P, Tan TL, Matthews CN, et al. (2017). Periarticular injection of liposomal bupivacaine offers no benefit over standard bupivacaine in total knee arthroplasty: a prospective, randomized, controlled trial. J Arthroplasty 32:628–34. doi: 10.1016/j.arth.2016.07.023.
  • Allen TM, Cullis PR. (2013). Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:36–48. doi: 10.1016/j.addr.2012.09.037.
  • Amundson AW, Johnson RL, Abdel MP, et al. (2017). A three-arm randomized clinical trial comparing continuous femoral plus single-injection sciatic peripheral nerve blocks versus periarticular injection with ropivacaine or liposomal bupivacaine for patients undergoing total knee arthroplasty. Anesthesiology 126:1139–50. doi: 10.1097/ALN.0000000000001586.
  • Andreu V, Arruebo M. (2018). Current progress and challenges of nanoparticle-based therapeutics in pain management. J Control Release 269:189–213. doi: 10.1016/j.jconrel.2017.11.018.
  • Baliki MN, Apkarian AV. (2015). Nociception, pain, negative moods, and behavior selection. Neuron 87:474–91. doi: 10.1016/j.neuron.2015.06.005.
  • Barletta M, Reed R. (2019). Local anesthetics: pharmacology and special preparations. Vet Clin North Am Small Anim Pract 49:1109–25. doi: 10.1016/j.cvsm.2019.07.004.
  • Beiranvand S, Eatemadi A, Karimi A. (2016). New updates pertaining to drug delivery of local anesthetics in particular bupivacaine using lipid nanoparticles. Nanoscale Res Lett 11:307. doi: 10.1186/s11671-016-1520-8.
  • Blair HA. (2021). Bupivacaine/meloxicam prolonged release: a review in postoperative pain. Drugs 81:1203–11. doi: 10.1007/s40265-021-01551-9.
  • Bragagni M, Gil-Alegre ME, Mura P, et al. (2018). Improving the therapeutic efficacy of prilocaine by PLGA microparticles: preparation, characterization and in vivo evaluation. Int J Pharm 547:24–30. doi: 10.1016/j.ijpharm.2018.05.054.
  • Callender SP, Mathews JA, Kobernyk K, et al. (2017). Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery. Int J Pharm 526:425–42. doi: 10.1016/j.ijpharm.2017.05.005.
  • Chang HI, Yeh MK. (2012). Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine 7:49–60. doi: 10.2147/IJN.S26766.
  • Chaurasiya A, Gorajiya A, Panchal K, et al. (2021). A review on multivesicular liposomes for pharmaceutical applications: preparation, characterization, and translational challenges. Drug Deliv Transl Res 12:1569–87. doi: 10.1007/s13346-021-01060-y.
  • Chiu C, Aleshi P, Esserman LJ, et al. (2018). Improved analgesia and reduced post-operative nausea and vomiting after implementation of an enhanced recovery after surgery (ERAS) pathway for total mastectomy. BMC Anesthesiol 18:41. doi: 10.1186/s12871-018-0505-9.
  • Cloyd C, Moffett BS, Bernhardt MB, et al. (2018). Efficacy of liposomal bupivacaine in pediatric patients undergoing spine surgery. Paediatr Anaesth 28:982–6. doi: 10.1111/pan.13482.
  • Colloca L, Ludman T, Bouhassira D, et al. (2017). Neuropathic pain. Nat Rev Dis Primers 3:17002. doi: 10.1038/nrdp.2017.2.
  • Coppens SJR, Zawodny Z, Dewinter G, et al. (2019). In search of the Holy Grail: poisons and extended release local anesthetics. Best Pract Res Clin Anaesthesiol 33:3–21. doi: 10.1016/j.bpa.2019.03.002.
  • Cordeiro Lima Fernandes P, David de Moura L, Freitas de Lima F, et al. (2021). Lipid nanocapsules loaded with prilocaine and lidocaine and incorporated in gel for topical application. Int J Pharm 602:120675. doi: 10.1016/j.ijpharm.2021.120675.
  • Cusack SL, Jaros M, Kuss M, et al. (2012). Clinical evaluation of XaraColl((R)), a bupivacaine-collagen implant, for postoperative analgesia in two multicenter, randomized, double-blind, placebo-controlled pilot studies. J Pain Res 5:217–25. doi: 10.2147/JPR.S33453.
  • Daryab M, Faizi M, Mahboubi A, et al. (2022). Preparation and characterization of lidocaine-loaded, microemulsion-based topical gels. Iran J Pharm Res 21:e123787. doi: 10.5812/ijpr.123787.
  • de Araújo DR, Ribeiro L. N d M, de Paula E. (2019). Lipid-based carriers for the delivery of local anesthetics. Expert Opin Drug Deliv 16:701–14. doi: 10.1080/17425247.2019.1629415.
  • De Melo NF, et al. (2012). Benzocaine-loaded polymeric nanocapsules: study of the anesthetic activities. J Pharm Sci 101:1157–65.
  • de Souza Guedes L, Martinez RM, Bou-Chacra NA, et al. (2021). An overview on topical administration of carotenoids and coenzyme Q10 loaded in lipid nanoparticles. Antioxidants 10:1034. doi: 10.3390/antiox10071034.
  • Deng W, Yan Y, Zhuang P, et al. (2022). Synthesis of nanocapsules blended polymeric hydrogel loaded with bupivacaine drug delivery system for local anesthetics and pain management. Drug Deliv 29:399–412., doi: 10.1080/10717544.2021.2023702.
  • Diez-Pascual AM. (2021). Carbon-based nanomaterials. Int J Mol Sci 22:7726.
  • Dowell D, Haegerich TM, Chou R. (2016). CDC guideline for prescribing opioids for chronic pain–United States, 2016. JAMA 315:1624–45. doi: 10.1001/jama.2016.1464.
  • Ekelund A, Peredistijs A, Grohs J, et al. (2022). SABER-bupivacaine reduces postoperative pain and opioid consumption after arthroscopic subacromial decompression: a randomized, placebo-controlled trial. J Am Acad Orthop Surg Glob Res Rev 6:e21.00287.
  • Eleftheriadis GK, Monou PK, Bouropoulos N, et al. (2020). Fabrication of mucoadhesive buccal films for local administration of ketoprofen and lidocaine hydrochloride by combining fused deposition modeling and inkjet printing. J Pharm Sci 109:2757–66. doi: 10.1016/j.xphs.2020.05.022.
  • Estebe JP, Ecoffey C, Dollo G, et al. (2002). Bupivacaine pharmacokinetics and motor blockade following epidural administration of the bupivacaine-sulphobutylether 7-beta-cyclodextrin complex in sheep. EJA 19:308–10. doi: 10.1097/00003643-200204000-00015.
  • Euliss LE, DuPont JA, Gratton S, et al. (2006). Imparting size, shape, and composition control of materials for nanomedicine. Chem Soc Rev 35:1095–104. doi: 10.1039/b600913c.
  • Fréville JC, Dollo G, Le Corre P, et al. (1996). Controlled systemic absorption and increased anesthetic effect of bupivacaine following epidural administration of bupivacaine-hydroxypropyl-beta-cyclodextrin complex. Pharm Res 13:1576–80. doi: 10.1023/A:1016000217550.
  • Fumic Dunkic L, Hostic V, Kustura A. (2022). Palliative treatment of intractable cancer pain. Acta Clin Croat 61:109–14.
  • Gailey AD, Ostrum RF. (2023). The use of liposomal bupivacaine in fracture surgery: a review. J Orthop Surg Res 18:267. doi: 10.1186/s13018-023-03583-1.
  • Gilron I, Watson CPN, Cahill CM, et al. (2006). Neuropathic pain: a practical guide for the clinician. CMAJ 175:265–75. doi: 10.1503/cmaj.060146.
  • Gradzielski M, Duvail M, de Molina PM, et al. (2021). Using microemulsions: formulation based on knowledge of their mesostructure. Chem Rev 121:5671–740. doi: 10.1021/acs.chemrev.0c00812.
  • Hadinoto K, Sundaresan A, Cheow WS. (2013). Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm 85:427–43. doi: 10.1016/j.ejpb.2013.07.002.
  • Hadj A, Hadj A, Hadj A, et al. (2012). Safety and efficacy of extended-release bupivacaine local anaesthetic in open hernia repair: a randomized controlled trial. ANZ J Surg 82:251–7. doi: 10.1111/j.1445-2197.2011.05754.x.
  • Hammoud Z, Khreich N, Auezova L, et al. (2019). Cyclodextrin-membrane interaction in drug delivery and membrane structure maintenance. Int J Pharm 564:59–76. doi: 10.1016/j.ijpharm.2019.03.063.
  • Hanif S, Sarfraz RM, Syed MA, et al. (2021). Development and optimization of tibezonium iodide and lignocaine hydrochloride containing novel mucoadhesive buccal tablets: a pharmacokinetic investigation among healthy humans. Drug Dev Ind Pharm 47:1209–22. doi: 10.1080/03639045.2021.1988095.
  • Harada A, Tsutsuki H, Zhang T, et al. (2020). Preparation of biodegradable PLGA-nanoparticles used for pH-sensitive intracellular delivery of an anti-inflammatory bacterial toxin to macrophages. Chem Pharm Bull 68:363–8. doi: 10.1248/cpb.c19-00917.
  • Harrison ZL, Bumgardner JD, Fujiwara T, et al. (2021). In vitro evaluation of loaded chitosan membranes for pain relief and infection prevention. J Biomed Mater Res B Appl Biomater 109:1735–43. doi: 10.1002/jbm.b.34831.
  • Hoare T, Bellas E, Zurakowski D, et al. (2010). Rheological blends for drug delivery. II. Prolongation of nerve blockade, biocompatibility, and in vitro-in vivo correlations. J Biomed Mater Res A 92:586–95. doi: 10.1002/jbm.a.32420.
  • Hou Y, Meng X, Zhang S, et al. (2022). Near-infrared triggered ropivacaine liposomal gel for adjustable and prolonged local anaesthesia. Int J Pharm 611:121315. doi: 10.1016/j.ijpharm.2021.121315.
  • Hutchins J, Delaney D, Vogel RI, et al. (2015). Ultrasound guided subcostal transversus abdominis plane (TAP) infiltration with liposomal bupivacaine for patients undergoing robotic assisted hysterectomy: a prospective randomized controlled study. Gynecol Oncol 138:609–13. doi: 10.1016/j.ygyno.2015.06.008.
  • Huynh NT, Passirani C, Saulnier P, et al. (2009). Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm 379:201–9. doi: 10.1016/j.ijpharm.2009.04.026.
  • Ivanova N, Gugleva V, Dobreva M, et al. (2019). Silver nanoparticles as multi-functional drug delivery systems. In: Farrukh MA, Koprowski R, eds. Nanomedicines. London: Intech.
  • Jacob BC, Peasah SK, Shogbon AO, et al. (2017). Postoperative pain management with liposomal bupivacaine in patients undergoing orthopedic knee and hip arthroplasty at a community hospital. Hosp Pharm 52:367–73. doi: 10.1177/0018578717715382.
  • Jeng CL, Torrillo TM, Rosenblatt MA. (2010). Complications of peripheral nerve blocks. Br J Anaesth 105:i97–107. doi: 10.1093/bja/aeq273.
  • Jiang Q, Yu S, Li X, et al. (2018). Evaluation of local anesthetic effects of lidocaine-ibuprofen ionic liquid stabilized silver nanoparticles in Male Swiss mice. J Photochem Photobiol B 178:367–70. doi: 10.1016/j.jphotobiol.2017.11.028.
  • Joudeh N, Linke D. (2022). Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology 20:262. doi: 10.1186/s12951-022-01477-8.
  • Kakran M, Li L. (2012). Carbon nanomaterials for drug delivery. KEM 508:76–80. doi: 10.4028/www.scientific.net/KEM.508.76.
  • Karashima K, Taniguchi M, Nakamura T, et al. (2007). Prolongation of intrathecal and sciatic nerve blocks using a complex of levobupivacaine with maltosyl-beta-cyclodextrin in rats. Anesth Analg 104:1121–8, tables of contents. doi: 10.1213/01.ane.0000260309.15034.52.
  • Karasulu HY. (2008). Microemulsions as novel drug carriers: the formation, stability, applications and toxicity. Expert Opin Drug Deliv 5:119–35. doi: 10.1517/17425247.5.1.119.
  • Karimian A, Parsian H, Majidinia M, et al. (2019). Nanocrystalline cellulose: preparation, physicochemical properties, and applications in drug delivery systems. Int J Biol Macromol 133:850–9. doi: 10.1016/j.ijbiomac.2019.04.117.
  • Kaye AD, Armstead-Williams C, Hyatali F, et al. (2020). Exparel for post­operative pain management: a comprehensive review. Curr Pain Headache Rep 24:73. doi: 10.1007/s11916-020-00905-4.
  • Kaye AD, Novitch MB, Carlson SF, et al. (2020). The role of exparel plus meloxicam for postoperative pain management. Curr Pain Headache Rep 24:6. doi: 10.1007/s11916-020-0837-2.
  • Kp K, R B. (2021). Evaluation and comparison of anti-inflammatory properties of ibuprofen using two drug delivery systems after third molar surgery: using chitosan microspheres as a carrier for local drug delivery in to the third molar socket and through the oral route. Br J Oral Maxillofac Surg 59:191–6. doi: 10.1016/j.bjoms.2020.08.025.
  • Lafont ND, Legros FJ, Boogaerts JG. (1996). Use of liposome-associated bupivacaine in a cancer pain syndrome. Anaesthesia 51:578–9. doi: 10.1111/j.1365-2044.1996.tb12569.x.
  • Lee B-M, Lee C, Lahiji SF, et al. (2020). Dissolving microneedles for rapid and painless local anesthesia. Pharmaceutics 12:366. doi: 10.3390/pharmaceutics12040366.
  • Lee CY, Robinson DA, Johnson CA, et al. (2019). A randomized controlled trial of liposomal bupivacaine parasternal intercostal block for sternotomy. Ann Thorac Surg 107:128–34. doi: 10.1016/j.athoracsur.2018.06.081.
  • Leiman D, Niebler G, Minkowitz HS. (2021). Pharmacokinetics and safety of INL-001 (bupivacaine HCl) implants compared with bupivacaine HCl infiltration after open unilateral inguinal hernioplasty. Adv Ther 38:691–706. doi: 10.1007/s12325-020-01565-x.
  • Lema MJ. (2001). Invasive analgesia techniques for advanced cancer pain. Surg Oncol Clin North Am 10:127–36. doi: 10.1016/S1055-3207(18)30089-9.
  • Leng F, Wan J, Liu W, et al. (2012). Prolongation of epidural analgesia using solid lipid nanoparticles as drug carrier for lidocaine. Reg Anesth Pain Med 37:159–65. doi: 10.1097/AAP.0b013e31823fc058.
  • Li A, Yang F, Xin J, et al. (2019). An efficient and long-acting local anesthetic: ropivacaine-loaded lipid-polymer hybrid nanoparticles for the control of pain. Int J Nanomedicine 14:913–20. doi: 10.2147/IJN.S190164.
  • Li M, Feng S, Xing H, et al. (2020). Dexmedetomidine and levobupivacaine co-loaded, transcriptional transactivator peptide modified nanostructured lipid carriers or lipid-polymer hybrid nanoparticles, which performed better for local anesthetic therapy? Drug Deliv 27:1452–60. doi: 10.1080/10717544.2020.1831105.
  • Li Y, Liao X, Zheng B. (2022). Studies on local anesthetic lidocaine hydrochloride delivery via photo-triggered implantable polymeric microneedles as a patient-controlled transdermal analgesia system. J Biomater Sci Polym Ed 33:155–73. doi: 10.1080/09205063.2021.1981535.
  • Lieblich SE, Danesi H. (2017). Liposomal bupivacaine use in third molar impaction surgery: INNOVATE study. Anesth Prog 64:127–35. doi: 10.2344/anpr-64-02-03.
  • Liu X, Zhao Q. (2019). Long-term anesthetic analgesic effects: Comparison of tetracaine loaded polymeric nanoparticles, solid lipid nanoparticles, and nanostructured lipid carriers in vitro and in vivo. Biomed Pharmacother 117:109057. doi: 10.1016/j.biopha.2019.109057.
  • Lu B, Ma Q, Zhang J, et al. (2021). Preparation and characterization of bupivacaine multivesicular liposome: a QbD study about the effects of formulation and process on critical quality attributes. Int J Pharm 598:120335., doi: 10.1016/j.ijpharm.2021.120335.
  • Lu I-J, Fu Y-S, Chang W-Y, et al. (2019). Using microemulsion as carrier for drug transdermal delivery: the effect of surfactants and cosurfactants. Curr Pharm Des 25:1052–8. doi: 10.2174/1381612825666190527091528.
  • Ma P, Li T, Xing H, et al. (2017). Local anesthetic effects of bupivacaine loaded lipid-polymer hybrid nanoparticles: in vitro and in vivo evaluation. Biomed Pharmacother 89:689–95. doi: 10.1016/j.biopha.2017.01.175.
  • Ma R-R, Xu H-X, Ni L, et al. (2022). Swelling of multilayered calcium alginate microspheres for drug-loaded dressing induced rapid lidocaine release for better pain control. Am J Chin Med 50:2085–102. doi: 10.1142/S0192415X22500896.
  • Mantha VRR, Nair HK, Venkataramanan R, et al. (2014). Nanoanesthesia: a novel, intravenous approach to ankle block in the rat by magnet-directed concentration of ropivacaine-associated nanoparticles. Anesth Analg 118:1355–62. doi: 10.1213/ANE.0000000000000175.
  • Medhi P, Olatunji O, Nayak A, et al. (2017). Lidocaine-loaded fish scale-nanocellulose biopolymer composite microneedles. AAPS PharmSciTech 18:1488–94. doi: 10.1208/s12249-017-0758-5.
  • Mills SEE, Nicolson KP, Smith BH. (2019). Chronic pain: a review of its epidemiology and associated factors in population-based studies. Br J Anaesth 123:e273–e283. doi: 10.1016/j.bja.2019.03.023.
  • Mocanu A, Pasca R-D, Tomoaia G, et al. (2012). Selective effect of procaine, tetracaine and dibucaine on gold nanoparticles. J Nanosci Nanotechnol 12:8935–9. doi: 10.1166/jnn.2012.6707.
  • Mocanu A, Pasca RD, Tomoaia G, et al. (2013). New procedure to synthesize silver nanoparticles and their interaction with local anesthetics. Int J Nanomedicine 8:3867–74. doi: 10.2147/IJN.S51063.
  • Moon RJ, Martini A, Nairn J, et al. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–94. doi: 10.1039/c0cs00108b.
  • Murnion BP. (2018). Neuropathic pain: current definition and review of drug treatment. Aust Prescr 41:60–3. doi: 10.18773/austprescr.2018.022.
  • Nafisi S, Samadi N, Houshiar M, et al. (2018). Mesoporous silica nanoparticles for enhanced lidocaine skin delivery. Int J Pharm 550:325–32. doi: 10.1016/j.ijpharm.2018.08.004.
  • Nair A, Mantha SSP, Suvvari P, et al. (2020). HTX-011: another game changer multimodal analgesic or an ephemeral, experimental drug! Saudi J Anaesth 14:419–20. doi: 10.4103/sja.SJA_227_20.
  • Nazemian V, Shadnoush M, Manaheji H, et al. (2016). Probiotics and inflammatory pain: a literature review study. Middle East J Rehabil Health 3:e36087. doi: 10.17795/mejrh-36087.
  • Neufeld NJ, Elnahal SM, Alvarez RH. (2017). Cancer pain: a review of epidemiology, clinical quality and value impact. Future Oncol 13:833–41. doi: 10.2217/fon-2016-0423.
  • Noronha VT, Paula AJ, Durán G, et al. (2017). Silver nanoparticles in dentistry. Dent Mater 33:1110–26. doi: 10.1016/j.dental.2017.07.002.
  • Otremba B, Dinges H-C, Schubert A-K, et al. (2022). Liposomal bupivacaine-no breakthrough in postoperative pain management. Anaesthesiologie 71:556–64. doi: 10.1007/s00101-022-01118-7.
  • Ottoboni T, Quart B, Pawasauskas J, et al. (2020). Mechanism of action of HTX-011: a novel, extended-release, dual-acting local anesthetic formulation for postoperative pain. Reg Anesth Pain Med 45(2):117–123. doi: 10.1136/rapm-2019-100714.
  • Pang Q, Zhao J, Zhang S, et al. (2020). Near-infrared triggered on-demand local anesthesia using a jammed microgels system. J Biomater Sci Polym Ed 31:2252–67. doi: 10.1080/09205063.2020.1800904.
  • Pathak P, Nagarsenker M. (2009). Formulation and evaluation of lidocaine lipid nanosystems for dermal delivery. AAPS PharmSciTech 10:985–92. doi: 10.1208/s12249-009-9287-1.
  • Pedoto A, Noel J, Park BJ, et al. (2021). Liposomal bupivacaine versus bupivacaine hydrochloride for intercostal nerve blockade in minimally invasive thoracic surgery. J Cardiothorac Vasc Anesth 35:1393–8. doi: 10.1053/j.jvca.2020.11.067.
  • Prabhu M, Clapp MA, McQuaid-Hanson E, et al. (2018). Liposomal bupivacaine block at the time of cesarean delivery to decrease postoperative pain: a randomized controlled trial. Obstet Gynecol 132:70–8. doi: 10.1097/AOG.0000000000002649.
  • Prescott SA, Ratté S. (2017). Somatosensation and pain. In: Michael Conn P, ed. Conn’s translational neuroscience. New York: Academic Press, 517–39.
  • Prieto M, Usón L, Garcia-Salinas S, et al. (2022). Light activated pulsatile drug delivery for prolonged peripheral nerve block. Biomaterials 283:121453. doi: 10.1016/j.biomaterials.2022.121453.
  • Qi R-Q, Liu W, Wang D-Y, et al. (2021). Development of local anesthetic drug delivery system by administration of organo-silica nanoformulations under ultrasound stimuli: in vitro and in vivo investigations. Drug Deliv 28:54–62. doi: 10.1080/10717544.2020.1856220.
  • Qiao Q, Fu X, Huang R, et al. (2022). Ropivacaine-loaded, hydroxypropyl chitin thermo-sensitive hydrogel combined with hyaluronan: an injectable, sustained-release system for providing long-lasting local anesthesia in rats. Reg Anesth Pain Med 47:234–41. doi: 10.1136/rapm-2021-102726.
  • Qureshi AT. (2013). Silver nanoparticles as drug delivery systems [doctoral dissertations]. LSU.
  • Rajpoot K. (2019). Solid lipid nanoparticles: a promising nanomaterial in drug delivery. Curr Pharm Des 25:3943–59. doi: 10.2174/1381612825666190903155321.
  • Ramos Campos EV, Silva de Melo NF, Guilherme VA, et al. (2013). Preparation and characterization of poly(epsilon-caprolactone) nanospheres containing the local anesthetic lidocaine. J Pharm Sci 102:215–26. doi: 10.1002/jps.23350.
  • Rideau E, Dimova R, Schwille P, et al. (2018). Liposomes and polymersomes: a comparative review towards cell mimicking. Chem Soc Rev 47:8572–610. doi: 10.1039/c8cs00162f.
  • Rodrigues da Silva GH, Lemes JBP, Geronimo G, et al. (2021). Lipid nanoparticles loaded with butamben and designed to improve anesthesia at inflamed tissues. Biomater Sci 9:3378–89. doi: 10.1039/d1bm00077b.
  • Sapra B, Thatai P, Bhandari S, et al. (2014). A critical appraisal of microemulsions for drug delivery: part II. Ther Deliv 5:83–94. doi: 10.4155/tde.13.125.
  • Scarborough BM, Smith CB. (2018). Optimal pain management for patients with cancer in the modern era. CA Cancer J Clin 68:182–96. doi: 10.3322/caac.21453.
  • Schanté CE, Zuber G, Herlin C, et al. (2011). Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr Polym 85:469–89. doi: 10.1016/j.carbpol.2011.03.019.
  • Shankarappa SA, Tsui JH, Kim KN, et al. (2012). Prolonged nerve blockade delays the onset of neuropathic pain. Proc Natl Acad Sci U S A 109:17555–60. doi: 10.1073/pnas.1214634109.
  • Simone CB, Vapiwala N, Hampshire MK, 2nd, et al. (2012). Cancer patient attitudes toward analgesic usage and pain intervention. Clin J Pain 28:157–62. doi: 10.1097/AJP.0b013e318223be30.
  • Simpson JC, Bao X, Agarwala A. (2019). Pain management in enhanced recovery after surgery (ERAS) protocols. Clin Colon Rectal Surg 32:121–8. doi: 10.1055/s-0038-1676477.
  • Singhvi MS, Zinjarde SS, Gokhale DV. (2019). Polylactic acid: synthesis and biomedical applications. J Appl Microbiol 127:1612–26. doi: 10.1111/jam.14290.
  • Stayner RS, Copenhaver DJ. (2012). Opioids, pain management and the law. Curr Opin Anaesthesiol 25:566–71. doi: 10.1097/ACO.0b013e328357a24a.
  • Su J, Chen X, Liu H, et al. (2021). Ropivacaine magnetic nanoparticles: an efficient local anesthetic nerve conduction blocker. Mat Express 11:1819–25. doi: 10.1166/mex.2021.2098.
  • Sun FR, et al. (2022). Application of extended-release local anesthetics based on composite polymer materials in an animal model of chronic pain. Med J Peking Union Med Coll Hosp 13:433–9.
  • Suo M, Zhao X, Yu G, et al. (2020). Lidocaine loaded nanostructured lipid carriers for prolonged local anesthesia: in vitro and in vivo studies. J Dispersion Sci Technol 43:682–9. doi: 10.1080/01932691.2020.1844739.
  • Tomic M, et al. (2018). Antiepileptic drugs as analgesics/adjuvants in inflammatory pain: current preclinical evidence. Pharmacol Ther 192:42–64.
  • Turrina C, Berensmeier S, Schwaminger SP. (2021). Bare iron oxide nanoparticles as drug delivery carrier for the short cationic peptide lasioglossin. Pharmaceuticals 14:405. doi: 10.3390/ph14050405.
  • Vadlamudi HC, Narendran H, Nagaswaram T, et al. (2014). Microemulsions based transdermal drug delivery systems. Curr Drug Discov Technol 11:169–80. doi: 10.2174/157016381103141128113034.
  • Vangijzegem T, Stanicki D, Laurent S. (2019). Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv 16:69–78. doi: 10.1080/17425247.2019.1554647.
  • Velanovich V, Rider P, Deck K, et al. (2019). Safety and efficacy of bupivacaine HCl collagen-matrix implant (INL-001) in open inguinal hernia repair: results from two randomized controlled trials. Adv Ther 36:200–16. doi: 10.1007/s12325-018-0836-4.
  • Wakaskar RR. (2017). General overview of lipid–polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes. J Drug Target 26:311–8. doi: 10.1080/1061186X.2017.1367006.
  • Wang B, Wang S, Zhang Q, et al. (2019). Recent advances in polymer-based drug delivery systems for local anesthetics. Acta Biomater 96:55–67. doi: 10.1016/j.actbio.2019.05.044.
  • Wang C, Yang J, Chang W. (2022). PLGA-based microspheres containing ropivacaine and betamethasone for sciatic nerve block in mice. Pharm Dev Technol 27:503–10. doi: 10.1080/10837450.2020.1871011.
  • Wang H, Zhang Y, Xu X, et al. (2021). An injectable mesoporous silica-based analgesic delivery system prolongs the duration of sciatic nerve block in mice with minimal toxicity. Acta Biomater 135:638–49. doi: 10.1016/j.actbio.2021.09.008.
  • Wang J, Chen J, Ye N, et al. (2012). Absorption, pharmacokinetics and disposition properties of solid lipid nanoparticles (SLNs). Curr Drug Metab 13:447–56. doi: 10.2174/138920012800166553.
  • Wang Y, Zhao Q, Han N, et al. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine 11:313–27. doi: 10.1016/j.nano.2014.09.014.
  • Wang Z, Huang H, Yang S, et al. (2016). Long-term effect of ropivacaine nanoparticles for sciatic nerve block on postoperative pain in rats. Int J Nanomedicine 11:2081–90. doi: 10.2147/IJN.S101563.
  • Wiffen PJ, Wee B, Derry S, et al. (2017). Opioids for cancer pain - an overview of Cochrane reviews. Cochrane Database Syst Rev 7:CD012592.
  • Woessner JF. (2005). Overview of pain: classification and concepts. In: Boswell MV, Eliot Cole B, eds. Weiner's pain management. Boca Raton, FL: CRC Press.
  • Yafout M, Ousaid A, Khayati Y, et al. (2021). Gold nanoparticles as a drug delivery system for standard chemotherapeutics: a new lead for targeted pharmacological cancer treatments. Sci Afr 11:e00685. doi: 10.1016/j.sciaf.2020.e00685.
  • Yang H, Kang G, Jang M, et al. (2020). Development of lidocaine-loaded dissolving microneedle for rapid and efficient local anesthesia. Pharmaceutics 12:1067. doi: 10.3390/pharmaceutics12111067.
  • Ye Q, Asherman J, Stevenson M, et al. (2000). DepoFoam technology: a vehicle for controlled delivery of protein and peptide drugs. J Control Release 64:155–66. doi: 10.1016/s0168-3659(99)00146-7.
  • You P, Yuan R, Chen C. (2017). Design and evaluation of lidocaine- and prilocaine-coloaded nanoparticulate drug delivery systems for topical anesthetic analgesic therapy: a comparison between solid lipid nanoparticles and nanostructured lipid carriers. Drug Des Devel Ther 11:2743–52. doi: 10.2147/DDDT.S141031.
  • Yu M, Yuan W, Xia Z, et al. (2023). Characterization of exparel bupivacaine multivesicular liposomes. Int J Pharm 639:122952. doi: 10.1016/j.ijpharm.2023.122952.
  • Zhai Y, Yang X, Zhao L, et al. (2014). Lipid nanocapsules for transdermal delivery of ropivacaine: in vitro and in vivo evaluation. Int J Pharm 471:103–11. doi: 10.1016/j.ijpharm.2014.05.035.
  • Zhan C, Wang W, McAlvin JB, et al. (2016). Phototriggered local anesthesia. Nano Lett 16:177–81. doi: 10.1021/acs.nanolett.5b03440.
  • Zhang J, Ma PX. (2013). Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev 65:1215–33. doi: 10.1016/j.addr.2013.05.001.
  • Zhang Y, Yue Y, Chang M. (2017). Local anaesthetic pain relief therapy: in vitro and in vivo evaluation of a nanotechnological formulation co-loaded with ropivacaine and dexamethasone. Biomed Pharmacother 96:443–9. doi: 10.1016/j.biopha.2017.09.124.
  • Zhao L, Wang Y, Zhai Y, et al. (2014). Ropivacaine loaded microemulsion and microemulsion-based gel for transdermal delivery: preparation, optimization, and evaluation. Int J Pharm 477:47–56. doi: 10.1016/j.ijpharm.2014.10.005.
  • Zhao W, Du Y, Ashfaq S, et al. (2022). Evaluation of the efficacy, biocompatibility, and permeation of bupivacaine-loaded poly(epsilon-caprolactone) nano-capsules as an anesthetic. J Biomed Nanotechnol 18:268–76. doi: 10.1166/jbn.2022.3223.
  • Zhou L-Y, Wang Y-H, Pan R-R, et al. (2022). Optimized-dose lidocaine-loaded sulfobutyl ether β-cyclodextrin/hyaluronic acid hydrogels to improve physical, chemical, and pharmacological evaluation for local anesthetics and drug delivery systems. J Mater Sci 57:7068–84. doi: 10.1007/s10853-022-07072-4.