2,901
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Multiple delivery strategies of nanocarriers for myocardial ischemia-reperfusion injury: current strategies and future prospective

, , , , , , & show all
Article: 2298514 | Received 02 Aug 2023, Accepted 30 Nov 2023, Published online: 26 Dec 2023

References

  • Abu-Dief AM, Alsehli M, Al-Enizi A, Nafady A. (2022). Recent advances in mesoporous silica nanoparticles for targeted drug delivery applications. Curr Drug Deliv 19:1–16. doi: 10.2174/1567201818666210708123007.
  • Alagarsamy KN, Yan W, Srivastava A, et al. (2019). Application of injectable hydrogels for cardiac stem cell therapy and tissue engineering. Rev Cardiovasc Med 20:221–30. doi: 10.31083/j.rcm.2019.04.534.
  • Algoet M, Janssens S, Himmelreich U, et al. (2022). Myocardial ischemia-reperfusion injury and the influence of inflammation. Trends Cardiovasc Med 33:357–66. doi: 10.1016/j.tcm.2022.02.005.
  • Ali A, Zafar H, Zia M, et al. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67. doi: 10.2147/NSA.S99986.
  • Bietenbeck M, Engel S, Lamping S, et al. (2019). Functionalization of clinically approved MRI contrast agents for the delivery of VEGF. Bioconjug Chem 30:1042–7. doi: 10.1021/acs.bioconjchem.9b00142.
  • Borracci RA, Amrein E, Alvarez Gallesio JM, et al. (2021). Remote ischaemic conditioning in patients with ST-elevation myocardial infarction treated with percutaneous coronary intervention: an updated meta-analysis of clinical outcomes. Acta Cardiol 76:623–31. doi: 10.1080/00015385.2020.1766259.
  • Bugger H, Pfeil K. (2020). Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim Biophys Acta Mol Basis Dis 1866:165768. doi: 10.1016/j.bbadis.2020.165768.
  • Cai W, Liu L, Shi X, et al. (2023). Alox15/15-HpETE aggravates myocardial ischemia-reperfusion injury by promoting cardiomyocyte ferroptosis. Circulation 147:1444–60. doi: 10.1161/CIRCULATIONAHA.122.060257.
  • Cao S, Deng Q, Wang Y, et al. (2021). Ultrasound-targeted microbubble destruction-mediated Ang1 gene transfection improves left ventricular structural and sympathetic nerve remodeling in canines with myocardial infarction. Ann Transl Med 9:221–221. doi: 10.21037/atm-20-839.
  • Chen GH, Xu J, Yang YJ. (2017). Exosomes: promising sacks for treating ischemic heart disease? Am J Physiol Heart Circ Physiol 313:H508–H523. doi: 10.1152/ajpheart.00213.2017.
  • Chen J, Song Y, Wang Q, et al. (2022). Targeted neutrophil-mimetic liposomes promote cardiac repair by adsorbing proinflammatory cytokines and regulating the immune microenvironment. J Nanobiotechnology 20:218. doi: 10.1186/s12951-022-01433-6.
  • Chen W, Li D. (2020). Reactive oxygen species (ROS)-responsive nanomedicine for solving ischemia-reperfusion injury. Front Chem 8:732. doi: 10.3389/fchem.2020.00732.
  • Cheng B, Toh EKW, Chen K-H, et al. (2016). Biomimicking platelet-monocyte interactions as a novel targeting strategy for heart healing. Adv Healthc Mater 5:2686–97. doi: 10.1002/adhm.201600724.
  • Cheng Y, Cheng L, Gao X, et al. (2021). Covalent modification of Keap1 at Cys77 and Cys434 by pubescenoside a suppresses oxidative stress-induced NLRP3 inflammasome activation in myocardial ischemia-reperfusion injury. Theranostics 11:861–77. doi: 10.7150/thno.48436.
  • Chenthamara D, Subramaniam S, Ramakrishnan SG, et al. (2019). Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 23:20. doi: 10.1186/s40824-019-0166-x.
  • Christman KL, Vardanian AJ, Fang Q, et al. (2004). Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol 44:654–60. doi: 10.1016/j.jacc.2004.04.040.
  • Cung TT, Morel O, Cayla G, et al. (2015). Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med 373:1021–31. doi: 10.1056/NEJMoa1505489.
  • Du Y, Huo Y, Yang Q, et al. (2023). Ultrasmall iron-gallic acid coordination polymer nanodots with antioxidative neuroprotection for PET/MR imaging-guided ischemia stroke therapy. Exploration (Beijing) 3:20220041. doi: 10.1002/EXP.20220041.
  • Gao L, Qiu F, Cao H, et al. (2023). Therapeutic delivery of microRNA-125a-5p oligonucleotides improves recovery from myocardial ischemia/reperfusion injury in mice and swine. Theranostics 13:685–703. doi: 10.7150/thno.73568.
  • Gong R, Wu YQ. (2019). Remote ischemic conditioning during primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction: a systematic review and meta-analysis. J Cardiothorac Surg 14:14. doi: 10.1186/s13019-019-0834-x.
  • Graney PL, Ben-Shaul S, Landau S, et al. (2020). Macrophages of diverse phenotypes drive vascularization of engineered tissues. Sci Adv 6:eaay6391. doi: 10.1126/sciadv.aay6391.
  • Guan Y, Yao W, Yi K, et al. (2021). Nanotheranostics for the management of hepatic ischemia-reperfusion injury. Small 17:e2007727. doi: 10.1002/smll.202007727.
  • Hahn JY, Song YB, Kim EK, et al. (2013). Ischemic postconditioning during primary percutaneous coronary intervention: the effects of postconditioning on myocardial reperfusion in patients with ST-segment elevation myocardial infarction (POST) randomized trial. Circulation 128:1889–96. doi: 10.1161/CIRCULATIONAHA.113.001690.
  • Han C, Yang J, Sun J, Qin G. (2022). Extracellular vesicles in cardiovascular disease: Biological functions and therapeutic implications. Pharmacol Ther 233:108025. doi: 10.1016/j.pharmthera.2021.108025.
  • Heusch G, Gersh BJ. (2017). The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur Heart J 38:774–84. doi: 10.1093/eurheartj/ehw224.
  • Ho LWC, Liu Y, Han R, et al. (2019). Nano-cell interactions of non-cationic bionanomaterials. Acc Chem Res 52:1519–30. doi: 10.1021/acs.accounts.9b00103.
  • Hou M, Wu X, Zhao Z, et al. (2022). Endothelial cell-targeting, ROS-ultrasensitive drug/siRNA co-delivery nanocomplexes mitigate early-stage neutrophil recruitment for the anti-inflammatory treatment of myocardial ischemia reperfusion injury. Acta Biomater 143:344–55. doi: 10.1016/j.actbio.2022.02.018.
  • Hu CM, Fang RH, Wang KC, et al. (2015). Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526:118–21. doi: 10.1038/nature15373.
  • Hu CM, Zhang L, Aryal S, et al. (2011). Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A 108:10980–5. doi: 10.1073/pnas.1106634108.
  • Hu Q, Qian C, Sun W, et al. (2016). Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Adv Mater 28:9573–80. doi: 10.1002/adma.201603463.
  • Hu S, Wang X, Li Z, et al. (2021). Platelet membrane and stem cell exosome hybrid enhances cellular uptake and targeting to heart injury. Nano Today 39:101210. doi: 10.1016/j.nantod.2021.101210.
  • Hui S, Ghergurovich JM, Morscher RJ, et al. (2017). Glucose feeds the TCA cycle via circulating lactate. Nature 551:115–8. doi: 10.1038/nature24057.
  • Ibáñez B, Heusch G, Ovize M, Van de Werf F. (2015). Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 65:1454–71. doi: 10.1016/j.jacc.2015.02.032.
  • Ikeda G, Matoba T, Ishikita A, et al. (2021). Nanoparticle-mediated simultaneous targeting of mitochondrial injury and inflammation attenuates myocardial ischemia-reperfusion injury. J Am Heart Assoc 10:e019521. doi: 10.1161/JAHA.120.019521.
  • Ikeda G, Matoba T, Nakano Y, et al. (2016). Nanoparticle-mediated targeting of cyclosporine a enhances cardioprotection against ischemia-reperfusion injury through inhibition of mitochondrial permeability transition pore opening. Sci Rep 6:20467. doi: 10.1038/srep20467.
  • Jenča D, Melenovský V, Stehlik J, et al. (2021). Heart failure after myocardial infarction: incidence and predictors. ESC Heart Fail 8:222–37. doi: 10.1002/ehf2.13144.
  • Kang M, Jordan V, Blenkiron C, Chamley LW. (2021). Biodistribution of extracellular vesicles following administration into animals: a systematic review. J Extracell Vesicles 10:e12085. doi: 10.1002/jev2.12085.
  • Kaptoge S, Pennells L, DE Bacquer D, et al. (2019). World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. The Lancet Global Health 7:e1332–e1345. doi: 10.1016/S2214-109X(19)30318-3.
  • Kim Y, Nurakhayev S, Nurkesh A, et al. (2021). Macrophage polarization in cardiac tissue repair following myocardial infarction. Int J Mol Sci 22:5. doi: 10.3390/ijms22052715.
  • Kristen AV, Ackermann K, Buss S, et al. (2013). Inhibition of apoptosis by the intrinsic but not the extrinsic apoptotic pathway in myocardial ischemia-reperfusion. Cardiovasc Pathol 22:280–6. doi: 10.1016/j.carpath.2013.01.004.
  • Lan M, Hou M, Yan J, et al. (2022). Cardiomyocyte-targeted anti-inflammatory nanotherapeutics against myocardial ischemia reperfusion (IR) injury. Nano Res 15:9125–34. doi: 10.1007/s12274-022-4553-6.
  • Laurent S, Forge D, Port M, et al. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–110. doi: 10.1021/cr068445e.
  • Li F, Liu D, Liu M, et al. (2022a). Tregs biomimetic nanoparticle to reprogram inflammatory and redox microenvironment in infarct tissue to treat myocardial ischemia reperfusion injury in mice. J Nanobiotechnology 20:251. doi: 10.1186/s12951-022-01445-2.
  • Li H, Zhu J, Xu YW, et al. (2022b). Notoginsenoside R1-loaded mesoporous silica nanoparticles targeting the site of injury through inflammatory cells improves heart repair after myocardial infarction. Redox Biol 54:102384. doi: 10.1016/j.redox.2022.102384.
  • Li L, Wang Y, Guo R, et al. (2020). Ginsenoside Rg3-loaded, reactive oxygen species-responsive polymeric nanoparticles for alleviating myocardial ischemia-reperfusion injury. J Control Release 317:259–72. doi: 10.1016/j.jconrel.2019.11.032.
  • Li Q, Song Y, Wang Q, et al. (2021). Engineering extracellular vesicles with platelet membranes fusion enhanced targeted therapeutic angiogenesis in a mouse model of myocardial ischemia reperfusion. Theranostics 11:3916–31. doi: 10.7150/thno.52496.
  • Li W, Wu J, Zhang J, et al. (2018). Puerarin-loaded PEG-PE micelles with enhanced anti-apoptotic effect and better pharmacokinetic profile. Drug Deliv 25:827–37. doi: 10.1080/10717544.2018.1455763.
  • Li Z, Zhang Y, Feng N. (2019). Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opin Drug Deliv 16:219–37. doi: 10.1080/17425247.2019.1575806.
  • Liao X, Yang X, Deng H, et al. (2020). Injectable hydrogel-based nanocomposites for cardiovascular diseases. Front Bioeng Biotechnol 8:251. doi: 10.3389/fbioe.2020.00251.
  • Liu C, Su C. (2019). Design strategies and application progress of therapeutic exosomes. Theranostics 9:1015–28. doi: 10.7150/thno.30853.
  • Liu CJ, Yao L, Hu YM, Zhao BT. (2021). Effect of quercetin-loaded mesoporous silica nanoparticles on myocardial ischemia-reperfusion injury in rats and its mechanism. Int J Nanomedicine 16:741–52. doi: 10.2147/IJN.S277377.
  • Liu S, Chen X, Bao L, et al. (2020). Treatment of infarcted heart tissue via the capture and local delivery of circulating exosomes through antibody-conjugated magnetic nanoparticles. Nat Biomed Eng 4:1063–75. doi: 10.1038/s41551-020-00637-1.
  • Lu Y, Hu Q, Jiang C, Gu Z. (2019). Platelet for drug delivery. Curr Opin Biotechnol 58:81–91. doi: 10.1016/j.copbio.2018.11.010.
  • Luk BT, Zhang L. (2015). Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release 220:600–7. doi: 10.1016/j.jconrel.2015.07.019.
  • Lum AFH, Borden MA, Dayton PA, et al. (2006). Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J Control Release 111:128–34. doi: 10.1016/j.jconrel.2005.11.006.
  • Lundy DJ, Chen KH, Toh EK, Hsieh PC. (2016). Distribution of systemically administered nanoparticles reveals a size-dependent effect immediately following cardiac ischaemia-reperfusion injury. Sci Rep 6:25613. doi: 10.1038/srep25613.
  • Lyu Y, Xie J, Liu Y, et al. (2020). Injectable hyaluronic acid hydrogel loaded with functionalized human mesenchymal stem cell aggregates for repairing infarcted myocardium. ACS Biomater Sci Eng 6:6926–37. doi: 10.1021/acsbiomaterials.0c01344.
  • Marin W, Marin D, Ao X, Liu Y. (2021). Mitochondria as a therapeutic target for cardiac ischemia‑reperfusion injury (Review). Int J Mol Med 47:485–99. doi: 10.3892/ijmm.2020.4823.
  • Matsui Y, Kyoi S, Takagi H, et al. (2008). Molecular mechanisms and physiological significance of autophagy during myocardial ischemia and reperfusion. Autophagy 4:409–15. doi: 10.4161/auto.5638.
  • Matsui Y, Takagi H, Qu X, et al. (2007). Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100:914–22. doi: 10.1161/01.RES.0000261924.76669.36.
  • Mitchell MJ, Billingsley MM, Haley RM, et al. (2021). Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 20:101–24. doi: 10.1038/s41573-020-0090-8.
  • Mizushima N, Yoshimori T, Ohsumi Y. (2011). The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–32. doi: 10.1146/annurev-cellbio-092910-154005.
  • Nguyen MM, Carlini AS, Chien MP, et al. (2015). Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction. Adv Mater 27:5547–52. doi: 10.1002/adma.201502003.
  • Nomikou N, Tiwari P, Trehan T, et al. (2012). Studies on neutral, cationic and biotinylated cationic microbubbles in enhancing ultrasound-mediated gene delivery in vitro and in vivo. Acta Biomater 8:1273–80. doi: 10.1016/j.actbio.2011.09.010.
  • Ong S-B, Hernández-Reséndiz S, Crespo-Avilan GE, et al. (2018). Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther 186:73–87. doi: 10.1016/j.pharmthera.2018.01.001.
  • Oroojalian F, Beygi M, Baradaran B, et al. (2021). Immune cell membrane-coated biomimetic nanoparticles for targeted cancer therapy. Small 17:e2006484. doi: 10.1002/smll.202006484.
  • Ottersbach A, Mykhaylyk O, Heidsieck A, et al. (2018). Improved heart repair upon myocardial infarction: combination of magnetic nanoparticles and tailored magnets strongly increases engraftment of myocytes. Biomaterials 155:176–90. doi: 10.1016/j.biomaterials.2017.11.012.
  • Pitchaimani A, Nguyen TDT, Aryal S. (2018). Natural killer cell membrane infused biomimetic liposomes for targeted tumor therapy. Biomaterials 160:124–37. doi: 10.1016/j.biomaterials.2018.01.018.
  • Przyklenk K, Dong Y, Undyala VV, Whittaker P. (2012). Autophagy as a therapeutic target for ischaemia/reperfusion injury? Concepts, controversies, and challenges. Cardiovasc Res 94:197–205. doi: 10.1093/cvr/cvr358.
  • Qian L, Thapa B, Hong J, et al. (2018). The present and future role of ultrasound targeted microbubble destruction in preclinical studies of cardiac gene therapy. J Thorac Dis 10:1099–111. doi: 10.21037/jtd.2018.01.101.
  • Qiu C, Han HH, Sun J, et al. (2019). Regulating intracellular fate of siRNA by endoplasmic reticulum membrane-decorated hybrid nanoplexes. Nat Commun 10:2702. doi: 10.1038/s41467-019-10562-w.
  • Ramos IT, Henningsson M, Nezafat M, et al. (2018). Simultaneous assessment of cardiac inflammation and extracellular matrix remodeling after myocardial infarction. Circ Cardiovasc Imaging 11:11. doi: 10.1161/CIRCIMAGING.117.007453.
  • Romagnuolo R, Masoudpour H, Porta-Sanchez A, et al. (2019). Human embryonic stem cell-derived cardiomyocytes regenerate the infarcted pig heart but induce ventricular tachyarrhythmias. Stem Cell Reports 12:967–81. doi: 10.1016/j.stemcr.2019.04.005.
  • Salehi B, DEL Prado-Audelo ML, Cortes H, et al. (2020). Therapeutic applications of curcumin nanomedicine formulations in cardiovascular diseases. J Clin Med 9:3. doi: 10.3390/jcm9030746.
  • Schober A, Blay RM, Saboor Maleki S, et al. (2021). MicroRNA-21 controls circadian regulation of apoptosis in atherosclerotic lesions. Circulation 144:1059–73. doi: 10.1161/CIRCULATIONAHA.120.051614.
  • Shen D, He Z. (2021). Mesenchymal stem cell-derived exosomes regulate the polarization and inflammatory response of macrophages via miR-21-5p to promote repair after myocardial reperfusion injury. Ann Transl Med 9:1323–1323. doi: 10.21037/atm-21-3557.
  • Shi HT, Huang ZH, Xu TZ, et al. (2022). New diagnostic and therapeutic strategies for myocardial infarction via nanomaterials. EBioMedicine 78:103968. doi: 10.1016/j.ebiom.2022.103968.
  • Skoczeń A, Matusiak K, Setkowicz Z, et al. (2018). Low doses of polyethylene glycol coated iron oxide nanoparticles cause significant elemental changes within main organs. Chem Res Toxicol 31:876–84. doi: 10.1021/acs.chemrestox.8b00110.
  • Smyth T, Kullberg M, Malik N, et al. (2015). Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J Control Release 199:145–55. doi: 10.1016/j.jconrel.2014.12.013.
  • Spierings D, Mcstay G, Saleh M, et al. (2005). Connected to death: the (unexpurgated) mitochondrial pathway of apoptosis. Science 310:66–7. doi: 10.1126/science.1117105.
  • Su G, Liu L, Yang L, et al. (2018). Homing of endogenous bone marrow mesenchymal stem cells to rat infarcted myocardium via ultrasound-mediated recombinant SDF-1alpha adenovirus in microbubbles. Oncotarget 9:477–87. doi: 10.18632/oncotarget.23068.
  • Sun L, Huang CW, Wu J, et al. (2013). The use of cationic microbubbles to improve ultrasound-targeted gene delivery to the ischemic myocardium. Biomaterials 34:2107–16. doi: 10.1016/j.biomaterials.2012.11.041.
  • Sun Z, Xie Y, Lee RJ, et al. (2020). Myocardium-targeted transplantation of PHD2 shRNA-modified bone mesenchymal stem cells through ultrasound-targeted microbubble destruction protects the heart from acute myocardial infarction. Theranostics 10:4967–82. doi: 10.7150/thno.43233.
  • Tan H, Song Y, Chen J, et al. (2021). Platelet-like fusogenic liposome-mediated targeting delivery of miR-21 improves myocardial remodeling by reprogramming macrophages post myocardial ischemia-reperfusion injury. Adv Sci (Weinh) 8:e2100787.
  • Tardif J-C, Kouz S, Waters DD, et al. (2019). Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med 381:2497–505. doi: 10.1056/NEJMoa1912388.
  • Traverse JH, Henry TD, Dib N, et al. (2019). First-in-man study of a cardiac extracellular matrix hydrogel in early and late myocardial infarction patients. JACC Basic Transl Sci 4:659–69. doi: 10.1016/j.jacbts.2019.07.012.
  • Unger E, Porter T, Lindner J, Grayburn P. (2014). Cardiovascular drug delivery with ultrasound and microbubbles. Adv Drug Deliv Rev 72:110–26. doi: 10.1016/j.addr.2014.01.012.
  • Valikeserlis I, Athanasiou AA, Stakos D. (2021). Cellular mechanisms and pathways in myocardial reperfusion injury. Coron Artery Dis 32:567–77. doi: 10.1097/MCA.0000000000000997.
  • VAN Wamel A, Kooiman K, Harteveld M, et al. (2006). Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Control Release 112:149–55. doi: 10.1016/j.jconrel.2006.02.007.
  • Wang K, Jiang Z, Webster KA, et al. (2017). Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal MicroRNA-21. Stem Cells Transl Med 6:209–22. doi: 10.5966/sctm.2015-0386.
  • Wang T, Zhou T, Xu M, et al. (2022a). Platelet membrane-camouflaged nanoparticles carry microRNA inhibitor against myocardial ischaemia–reperfusion injury. J Nanobiotechnology 20:434. doi: 10.1186/s12951-022-01639-8.
  • Wang X, Chen Y, Zhao Z, et al. (2018). Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction. J Am Heart Assoc 7:e008737.
  • Wang Y, Wang D, Wu C, et al. (2022b). MMP 9-instructed assembly of bFGF nanofibers in ischemic myocardium to promote heart repair. Theranostics 12:7237–49. doi: 10.7150/thno.77345.
  • Wei Y, Zhu M, Li S, et al. (2021). Engineered biomimetic nanoplatform protects the myocardium against ischemia/reperfusion injury by inhibiting pyroptosis. ACS Appl Mater Interfaces 13:33756–66. doi: 10.1021/acsami.1c03421.
  • Weng X, Tan H, Huang Z, et al. (2022). Targeted delivery and ROS-responsive release of Resolvin D1 by platelet chimeric liposome ameliorates myocardial ischemia-reperfusion injury. J Nanobiotechnology 20:454. doi: 10.1186/s12951-022-01652-x.
  • Wu MY, Yiang GT, Liao WT, et al. (2018). Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem 46:1650–67. doi: 10.1159/000489241.
  • Wu X, Li Y, Zhang S, Zhou X. (2021). Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics 11:3052–9. doi: 10.7150/thno.54113.
  • Xia W, Yan T, Wen L, et al. (2022). Hypothermia-Triggered Mesoporous Silica Particles for Controlled Release of Hydrogen Sulfide to Reduce the I/R Injury of the Myocardium. ACS Biomater Sci Eng 8:2970–8. doi: 10.1021/acsbiomaterials.2c00266.
  • Xiang M, Lu Y, Xin L, et al. (2021). Role of oxidative stress in reperfusion following myocardial ischemia and its treatments. Oxid Med Cell Longev 2021:6614009–23. doi: 10.1155/2021/6614009.
  • Xie D-M, Zhong Q, Xu X, et al. (2023). Alpha lipoic acid–loaded electrospun fibrous patch films protect heart in acute myocardial infarction mice by inhibiting oxidative stress. Int J Pharm 632:122581. doi: 10.1016/j.ijpharm.2023.122581.
  • Xiong YY, Gong ZT, Tang RJ, Yang YJ. (2021). The pivotal roles of exosomes derived from endogenous immune cells and exogenous stem cells in myocardial repair after acute myocardial infarction. Theranostics 11:1046–58. doi: 10.7150/thno.53326.
  • Yajima S, Miyagawa S, Fukushima S, et al. (2019). Prostacyclin analogue-loaded nanoparticles attenuate myocardial ischemia/reperfusion injury in rats. JACC Basic Transl Sci 4:318–31. doi: 10.1016/j.jacbts.2018.12.006.
  • Yu CG, Deng Q, Cao S, et al. (2022). Ultrasound-targeted cationic microbubbles combined with the NFkappaB binding motif increase SDF-1alpha gene transfection: A protective role in hearts after myocardial infarction. Kaohsiung J Med Sci 38:594–604. doi: 10.1002/kjm2.12529.
  • Zargar SM, Hafshejani DK, Eskandarinia A, et al. (2019). A review of controlled drug delivery systems based on cells and cell membranes. J Med Signals Sens 9:181–9. doi: 10.4103/jmss.JMSS_53_18.
  • Zhang K, Zhao X, Chen X, et al. (2018). Enhanced therapeutic effects of mesenchymal stem cell-derived exosomes with an injectable hydrogel for hindlimb ischemia treatment. ACS Appl Mater Interfaces 10:30081–91. doi: 10.1021/acsami.8b08449.
  • Zhang L, Wei Q, Liu X, et al. (2021a). Exosomal microRNA-98-5p from hypoxic bone marrow mesenchymal stem cells inhibits myocardial ischemia-reperfusion injury by reducing TLR4 and activating the PI3K/Akt signaling pathway. Int Immunopharmacol 101:107592. doi: 10.1016/j.intimp.2021.107592.
  • Zhang T, Dang M, Zhang W, Lin X. (2020). Gold nanoparticles synthesized from Euphorbia fischeriana root by green route method alleviates the isoprenaline hydrochloride induced myocardial infarction in rats. J Photochem Photobiol B 202:111705. doi: 10.1016/j.jphotobiol.2019.111705.
  • Zhang Y, Cai Z, Shen Y, et al. (2021b). Hydrogel-load exosomes derived from dendritic cells improve cardiac function via Treg cells and the polarization of macrophages following myocardial infarction. J Nanobiotechnology 19:271. doi: 10.1186/s12951-021-01016-x.
  • Zhang Y, Ren X, Wang Y, et al. (2021c). Targeting ferroptosis by polydopamine nanoparticles protects heart against ischemia/reperfusion injury. ACS Appl Mater Interfaces 13:53671–82. doi: 10.1021/acsami.1c18061.
  • Zhang Y, Zhu D, Wei Y, et al. (2019). A collagen hydrogel loaded with HDAC7-derived peptide promotes the regeneration of infarcted myocardium with functional improvement in a rodent model. Acta Biomater 86:223–34. doi: 10.1016/j.actbio.2019.01.022.
  • Zhao J, Li X, Hu J, et al. (2019). Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res 115:1205–16. doi: 10.1093/cvr/cvz040.
  • Zhao T, Wu W, Sui L, et al. (2022). Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries. Bioact Mater 7:47–72. doi: 10.1016/j.bioactmat.2021.06.006.
  • Zhong S, Shu S, Wang Z, et al. (2012). Enhanced homing of mesenchymal stem cells to the ischemic myocardium by ultrasound-targeted microbubble destruction. Ultrasonics 52:281–6. doi: 10.1016/j.ultras.2011.08.013.
  • Zhou J, Yang X, Liu W, et al. (2018). Injectable OPF/graphene oxide hydrogels provide mechanical support and enhance cell electrical signaling after implantation into myocardial infarct. Theranostics 8:3317–30. doi: 10.7150/thno.25504.
  • Zhou T, Yang X, Wang T, et al. (2022). Platelet-Membrane-Encapsulated Carvedilol with Improved Targeting Ability for Relieving Myocardial Ischemia-Reperfusion Injury. Membranes (Basel) 12:6. doi: 10.3390/membranes12060605.
  • Zhou Z, Sun Y, Shen J, et al. (2014). Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials 35:7470–8. doi: 10.1016/j.biomaterials.2014.04.063.
  • Zhu K, Yao Y, Wang K, et al. (2023). Berberin sustained-release nanoparticles were enriched in infarcted rat myocardium and resolved inflammation. J Nanobiotechnology 21:33. doi: 10.1186/s12951-023-01790-w.
  • Ziegler M, Wang X, Lim B, et al. (2017). Platelet-targeted delivery of peripheral blood mononuclear cells to the ischemic heart restores cardiac function after ischemia-reperfusion injury. Theranostics 7:3192–206. doi: 10.7150/thno.19698.
  • Zielińska A, Carreiró F, Oliveira AM, et al. (2020). Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules 25:3731. doi: 10.3390/molecules25163731.