2,527
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advancing burn wound treatment: exploring hydrogel as a transdermal drug delivery system

, , , &
Article: 2300945 | Received 16 Aug 2023, Accepted 05 Dec 2023, Published online: 16 Feb 2024

References

  • Alkilani AZ, McCrudden MTC, Donnelly RF. (2015). Transdermal drug ­delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics 7:1–15. doi: 10.3390/pharmaceutics7040438.
  • Alkilani AZ, Nasereddin J, Hamed R, et al. (2022). Beneath the skin: A review of current trends and future prospects of transdermal drug delivery systems. Pharmaceutics 14:1152. doi: 10.3390/pharmaceutics14061152.
  • Almasaudi S. (2021). The antibacterial activities of honey. Saudi J Biol Sci 28:2188–96. Available at doi: 10.1016/j.sjbs.2020.10.017.
  • Alyoussef A, El-Gogary RI, Ahmed RF, et al. (2021). The beneficial activity of curcumin and resveratrol loaded in nanoemulgel for healing of burn-induced wounds. J Drug Deliv Sci Technol 62:102360. Available at doi: 10.1016/j.jddst.2021.102360.
  • Arbuthnot MK, Garcia AV. (2019). Early resuscitation and management of severe pediatric burns. Semin Pediatr Surg 28:73–8. doi: 10.1053/j.sempedsurg.2019.01.013.
  • Babaluei M, Mottaghitalab F, Seifalian A, Farokhi M. (2023). Injectable multifunctional hydrogel based on carboxymethylcellulose/polyacrylamide/polydopamine containing vitamin C and curcumin promoted full-thickness burn regeneration. Int J Biol Macromol 236:124005. Available at doi: 10.1016/j.ijbiomac.2023.124005.
  • Bai Q, Zheng C, Chen W, et al. (2022). Current challenges and future ­applications of antibacterial nanomaterials and chitosan hydrogel in burn wound healing. Mater Adv 3:6707–27. doi: 10.1039/D2MA00695B.
  • Banerjee J, Seetharaman S, Wrice NL, et al. (2019). Delivery of silver sulfadiazine and adipose derived stem cells using fibrin hydrogel ­improves infected burn wound regeneration. PLoS One 14:e0217965. doi: 10.1371/journal.pone.0217965.
  • Barrett LW, Fear VS, Waithman JC, et al. (2019). Understanding acute burn injury as a chronic disease. Burn Trauma 7:1–9.
  • Barrientos S, Stojadinovic O, Golinko MS, et al. (2008). Growth factors and cytokines in wound healing. Wound Repair Regen 16:585–601. doi: 10.1111/j.1524-475X.2008.00410.x.
  • Benbow M. (2008). Exploring the concept of moist wound healing and its application in practice. Br J Nurs 17:S4, S6, S8 passim–S16. doi: 10.12968/bjon.2008.17.Sup6.30705.
  • Blanco-Fernandez B, Castaño O, Mateos-Timoneda MÁ, et al. (2021). Nanotechnology approaches in chronic wound healing. Adv Wound Care (New Rochelle) 10:234–56. doi: 10.1089/wound.2019.1094.
  • Brumberg V, Astrelina T, Malivanova T, Samoilov A. (2021). Modern wound dressings: Hydrogel dressings. Biomedicines 9:1235. doi: 10.3390/biomedicines9091235.
  • Caraballo C, Jaimes F. (2019). Organ dysfunction in sepsis: An ominous trajectory from infection to death. Yale J Biol Med 92:629–40.
  • Cartotto R. (2017). Topical antimicrobial agents for pediatric burns. Burn Trauma 5:1–8.
  • Chakrabarti S, Mazumder B, Rajkonwar J, et al. (2021). bFGF and collagen matrix hydrogel attenuates burn wound inflammation through activation of ERK and TRK pathway. Sci Rep 11:3357. Available at doi: 10.1038/s41598-021-82888-9.
  • Chen CY, Yin H, Chen X, et al. (2020). Ångstrom-scale silver particle-embedded carbomer gel promotes wound healing by inhibiting bacterial colonization and inflammation. Sci Adv 6:eaba0942. doi: 10.1126/sciadv.aba0942.
  • Chen G, Zhou Y, Dai J, et al. (2022). Calcium alginate/PNIPAAm hydrogel with body temperature response and great biocompatibility: Application as burn wound dressing. Int J Biol Macromol 216:686–97. Available at doi: 10.1016/j.ijbiomac.2022.07.019.
  • Chen X, Zhang H, Yang X, et al. (2021). Preparation and application of quaternized chitosan-and agnps-base synergistic antibacterial hydrogel for burn wound healing. Molecules 26:4037. doi: 10.3390/molecules26134037.
  • Chi J, Zhang X, Chen C, et al. (2020). Bioactive materials antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing. Bioact Mater 5:253–9. Available at doi: 10.1016/j.bioactmat.2020.02.004.
  • Church D, Elsayed S, Reid O, et al. (2006). Burn wound infections. Clin Microbiol Rev 19:403–34. doi: 10.1128/CMR.19.2.403-434.2006.
  • Dang LH, Huynh NT, Pham NO, et al. (2019). Injectable nanocurcumin-dispersed gelatin-pluronic nanocomposite hydrogel platform for burn wound treatment. Bull Mater Sci 42:71. doi: 10.1007/s12034-019-1745-0.
  • De Luca I, Pedram P, Moeini A, et al. (2021). Nanotechnology development for formulating essential oils in wound dressing materials to promote the wound-healing process: A review. Appl Sci 11:1713. doi: 10.3390/app11041713.
  • Dhivya S, Padma VV, Santhini E. (2015). Wound dressings – a review. Biomedicines 5:24–8.
  • Divyashri G, Badhe RV, Sadanandan B, et al. (2022). Applications of hydrogel-based delivery systems in wound care and treatment: An up-to-date review. Polymers for Advanced Techs 33:2025–43. doi: 10.1002/pat.5661.
  • Dong M, Mao Y, Zhao Z, et al. (2022). Novel fabrication of antibiotic containing multifunctional silk fibroin injectable hydrogel dressing to enhance bactericidal action and wound healing efficiency on burn wound: In vitro and in vivo evaluations. Int Wound J 19:679–91. doi: 10.1111/iwj.13665.
  • El Maghraby GM, Barry BW, Williams AC. (2008). Liposomes and skin: From drug delivery to model membranes. Eur J Pharm Sci 34:203–22. doi: 10.1016/j.ejps.2008.05.002.
  • Fan F, Saha S, Hanjaya-Putra D. (2021). Biomimetic hydrogels to promote wound healing. Front Bioeng Biotechnol 9:718377. doi: 10.3389/fbioe.2021.718377.
  • Farahani M, Shafiee A. (2021). Wound healing: from passive to smart dressings. Adv Healthc Mater 10:e2100477. doi: 10.1002/adhm.202100477.
  • Fayyazbakhsh F, Khayat MJ, Leu MC. (2022). 3D-printed gelatin-alginate hydrogel dressings for burn wound healing: A comprehensive study. Int J Bioprint 8:618. doi: 10.18063/ijb.v8i4.618.
  • Fayyazbakhsh F, Khayat MJ, Sadler C, Day D. (2023). 3D-printed hydrogels dressings with bioactive borate glass for continuous hydration and treatment of second-degree burns. Int J Bioprinting 9(6):0118.
  • Feng L, Liu Y, Chen Y, et al. (2023). Injectable antibacterial hydrogel with asiaticoside-loaded liposomes and ultrafine silver nanosilver particles promotes healing of burn-infected wounds. Adv Healthc Mater 12:e2203201.
  • Firlar I, Altunbek M, McCarthy C, et al. (2022). Functional hydrogels for treatment of chronic wounds. Gels 8:127. doi: 10.3390/gels8020127.
  • Goel A, Shrivastava P. (2010). Post-burn scars and scar contractures. Indian J Plast Surg 43:S63–S71. doi: 10.4103/0970-0358.70724.
  • Goh M, Hwang Y, Tae G. (2016). Epidermal growth factor loaded heparin-based hydrogel sheet for skin wound healing. Carbohydr Polym 147:251–60. Available at doi: 10.1016/j.carbpol.2016.03.072.
  • Gupta A, Briffa SM, Swingler S, et al. (2020). Synthesis of silver nanoparticles using curcumin-cyclodextrins loaded into bacterial cellulose-based hydrogels for wound dressing applications. Biomacromolecules 21:1802–11. doi: 10.1021/acs.biomac.9b01724.
  • Gupta A, Kowalczuk M, Heaselgrave W, et al. (2019). The production and application of hydrogels for wound management: A review. Eur Polym J 111:134–51. Available at doi: 10.1016/j.eurpolymj.2018.12.019.
  • Gupta A, Low WL, Radecka I, et al. (2016). Characterisation and in vitro antimicrobial activity of biosynthetic silver-loaded bacterial cellulose hydrogels. J Microencapsul 33:725–34. doi: 10.1080/02652048.2016.1253796.
  • Han K, Bai Q, Zeng Q, et al. (2022). A multifunctional mussel-inspired hydrogel with antioxidant, electrical conductivity and photothermal activity loaded with mupirocin for burn healing. Mater Des 217:110598. doi: 10.1016/j.matdes.2022.110598.
  • Huang R, Hu J, Qian W, et al. (2021). Recent advances in nanotherapeutics for the treatment of burn wounds. Burn. Trauma 9:tkab026.
  • Huang Y, Mu L, Zhao X, et al. (2022). Bacterial growth-induced tobramycin smart release self-healing hydrogel for Pseudomonas aeruginosa-infected burn wound healing. ACS Nano 16:13022–36. doi: 10.1021/acsnano.2c05557.
  • Hussain Z, Thu HE, Rawas-Qalaji M, et al. (2022). Recent developments and advanced strategies for promoting burn wound healing. J Drug Deliv Sci Technol 68:103092. Available at doi: 10.1016/j.jddst.2022.103092.
  • Jacob S, Nair AB, Shah J, et al. (2021). Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics 13:357. doi: 10.3390/pharmaceutics13030357.
  • Jae ML, Jung KS, Ji SJ, et al. (2010). Antioxidant effect of lidocaine and procaine on reactive oxygen species-induced endothelial dysfunction in the rabbit abdominal aorta. Korean J Anesthesiol 59:104–10.
  • Javanmardi S, Ghojoghi A, Divband B, Ashrafi J. (2018). Titanium dioxide nanoparticle/gelatin: a potential burn wound healing biomaterial. Wounds Compend Clin Res Pract 30:372–9.
  • Jeong WY, Kwon M, Choi HE, Kim KS. (2021). Recent advances in transdermal drug delivery systems: a review. Biomater Res 25:24. doi: 10.1186/s40824-021-00226-6.
  • Jeschke MG, van Baar ME, Choudhry MA, et al. (2020). Burn injury. Nat Rev Dis Primers 6:11. Available at: doi: 10.1038/s41572-020-0145-5.
  • Jiann Chong ET, Ng JW, Lee P-C. (2022). Classification and medical applications of biomaterials–A mini review. Bio Integr 4(2):54–61.
  • Jiji S, Udhayakumar S, Rose C, et al. (2019). Thymol enriched bacterial cellulose hydrogel as effective material for third degree burn wound repair. Int J Biol Macromol 122:452–60. doi: 10.1016/j.ijbiomac.2018.10.192.
  • Johnson K, Muzzin N, Toufanian S, et al. (2020). Drug-impregnated, pressurized gas expanded liquid-processed alginate hydrogel scaffolds for accelerated burn wound healing. Acta Biomater 112:101–11. Available at doi: 10.1016/j.actbio.2020.06.006.
  • Johnson N, Wang Y. (2015). Drug delivery systems for wound healing. Curr Pharm Biotechnol 16:621–9. doi: 10.2174/1389201016666150206113720.
  • Kamlungmak S, Nakpheng T, Kaewpaiboon S, et al. (2021). Safety and biocompatibility of mupirocin nanoparticle-loaded hydrogel on burn wound in rat model. Biol Pharm Bull 44:1707–16. doi: 10.1248/bpb.b21-00397.
  • Kamlungmak S, Rugmai S, Tinpun K, et al. (2020). Phase behavior, in vitro drug release, and antibacterial activity of thermoresponsive poloxamer–polyvinyl alcohol hydrogel-loaded mupirocin nanoparticles. J Appl Polym Sci 137:1–14.
  • Karande P, Mitragotri S. (2009). Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim Biophys Acta 1788:2362–73. doi: 10.1016/j.bbamem.2009.08.015.
  • Kim B, Cho H-E, Moon SH, et al. (2020). Transdermal delivery systems in cosmetics. Biomed Dermatol 4:1–12. doi: 10.1186/s41702-019-0053-z.
  • Kim MH, Park H, Nam HC, et al. (2018). Injectable methylcellulose hydrogel containing silver oxide nanoparticles for burn wound healing. Carbohydr Polym 181:579–86. Available at doi: 10.1016/j.carbpol.2017.11.109.
  • Klinkajon W, Supaphol P. (2014). Novel copper (II) alginate hydrogels and their potential for use as anti-bacterial wound dressings. Biomed Mater 9:045008. doi: 10.1088/1748-6041/9/4/045008.
  • Kumar PM, Ghosh A. (2017). Development and evaluation of silver sulfadiazine loaded microsponge based gel for partial thickness (second degree) burn wounds. Eur J Pharm Sci 96:243–54. Available at doi: 10.1016/j.ejps.2016.09.038.
  • Kushibiki T, Mayumi Y, Nakayama E, et al. (2021). Photocrosslinked gelatin hydrogel improves wound healing and skin flap survival by the sustained release of basic fibroblast growth factor. Sci Rep 11:23094. Available at doi: 10.1038/s41598-021-02589-1.
  • Laurano R, Boffito M, Ciardelli G, Chiono V. (2022). Wound dressing products: A translational investigation from the bench to the market. Eng Regen 3:182–200. Available at doi: 10.1016/j.engreg.2022.04.002.
  • Lee KC, Joory K, Moiemen NS. (2014). History of burns: The past, present and the future. Burns Trauma 2:169–80. doi: 10.4103/2321-3868.143620.
  • Lenfant F, Lahet JJ, Courderot-Masuyer C, et al. (2004). Lidocaine has better antioxidant potential than ropivacaine and bupivacaine: In vitro comparison in a model of human erythrocytes submitted to an oxidative stress. Biomed Pharmacother 58:248–54. doi: 10.1016/j.biopha.2003.12.013.
  • Li J, Wang C, Han X, et al. (2022). Aramid nanofibers-reinforced rhein fibrous hydrogels as antibacterial and anti-inflammatory burn wound dressings. ACS Appl Mater Interfaces 14:45167–77. doi: 10.1021/acsami.2c12869.
  • Li Y, Han Y, Wang X, et al. (2017). Multifunctional hydrogels prepared by dual ion cross-linking for chronic wound healing. ACS Appl Mater Interfaces 9:16054–62. doi: 10.1021/acsami.7b04801.
  • Liu J, Jiang W, Xu Q, Zheng Y. (2022). Progress in antibacterial hydrogel dressing. Gels 8:503. doi: 10.3390/gels8080503.
  • Liu M, Chen Y, Zhu Q, et al. (2022). Antioxidant thermogelling formulation for burn wound healing. Chem Asian J 17:e202200396.
  • Low W, Kenward MA, Amin M, Martin C. (2016). Ionically crosslinked chitosan hydrogels for the controlled release of antimicrobial essential oils and metal ions for wound management applications. Medicines 3:8. doi: 10.3390/medicines3010008.
  • Madaghiele M, Demitri C, Sannino A, Ambrosio L. (2014). Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates. Burns Trauma 2:153–61. doi: 10.4103/2321-3868.143616.
  • Mai B, Jia M, Liu S, et al. (2020). Smart hydrogel-based DVDMS/bFGF nanohybrids for antibacterial phototherapy with multiple damaging sites and accelerated wound healing. ACS Appl Mater Interfaces 12:10156–69. doi: 10.1021/acsami.0c00298.
  • Markiewicz-Gospodarek A, Kozioł M, Tobiasz M, et al. (2022). Burn wound healing: clinical complications, medical care, treatment, and dressing types: the current state of knowledge for clinical practice. Int J Environ Res Public Health 19:1338. doi: 10.3390/ijerph19031338.
  • Martínez-Higuera A, Rodríguez-Beas C, Villalobos-Noriega JMA, et al. (2021). Hydrogel with silver nanoparticles synthesized by Mimosa tenuiflora for second-degree burns treatment. Sci Rep 11:11312. Available at doi: 10.1038/s41598-021-90763-w.
  • Miastkowska M, Kulawik-Pióro A, Szczurek M. (2020). Nanoemulsion gel formulation optimization for burn wounds: Analysis of rheological and sensory properties. Processes 8:1416. doi: 10.3390/pr8111416.
  • Mirhaj M, Labbaf S, Tavakoli M, Seifalian AM. (2022). Emerging treatment strategies in wound care. Int Wound J 19:1934–54. doi: 10.1111/iwj.13786.
  • Miricescu D, Badoiu SC, Stanescu-Spinu II, et al. (2021). Growth factors, reactive oxygen species, and metformin—Promoters of the wound healing process in burns? Int J Mol Sci 22:9512. doi: 10.3390/ijms22179512.
  • Moradi M, Barati A, Moradi S, Zarinabadi E. (2023). Synthesis and characterization of starch-based hydrogels containing myrtus oil nanoemulsion for wound dressings. Polym Bull Available at doi: 10.1007/s00289-023-04855-w.
  • Negut I, Grumezescu V, Grumezescu AM. (2018). Treatment strategies for infected wounds. Molecules 23:2392. doi: 10.3390/molecules23092392.
  • Nischwitz SP, Luze H, Popp D, et al. (2021). Global burn care and the ideal burn dressing reloaded—A survey of global experts. Burns 47:1665–74. Available at doi: 10.1016/j.burns.2021.02.008.
  • Nuutila K, Grolman J, Yang L, et al. (2020). Immediate treatment of burn wounds with high concentrations of topical antibiotics in an alginate hydrogel using a platform wound device. Adv Wound Care (New Rochelle) 9:48–60. doi: 10.1089/wound.2019.1018.
  • Ouyang QQ, Hu Z, Lin ZP, et al. (2018). Chitosan hydrogel in combination with marine peptides from tilapia for burns healing. Int J Biol Macromol 112:1191–8. doi: 10.1016/j.ijbiomac.2018.01.217.
  • Pan Z, Ye H, Wu D. (2021). Recent advances on polymeric hydrogels as wound dressings. APL Bioeng 5:011504. doi: 10.1063/5.0038364.
  • Park JW, Hwang SR, Yoon IS. (2017). Advanced growth factor delivery systems in wound management and skin regeneration. Molecules 22:1259. doi: 10.3390/molecules22081259.
  • Qian J, Ji L, Xu W, et al. (2022). Copper-hydrazide coordinated multifunctional hyaluronan hydrogels for infected wound healing. ACS Appl Mater Interfaces 14:16018–31. doi: 10.1021/acsami.2c01254.
  • Qin J, Li M, Yuan M, et al. (2022). Gallium(III)-mediated dual-cross-linked alginate hydrogels with antibacterial properties for promoting infected wound healing. ACS Appl Mater Interfaces 14:22426–42. doi: 10.1021/acsami.2c02497.
  • Rai VK, Mishra N, Yadav KS, Yadav NP. (2018). Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J Control Release 270:203–25. doi: 10.1016/j.jconrel.2017.11.049.
  • Rezaei F, Damoogh S, Reis RL, et al. (2020). Dual drug delivery system based on pH-sensitive silk fibroin/alginate nanoparticles entrapped in PNIPAM hydrogel for treating severe infected burn wound. Biofabrication 13:015005. doi: 10.1088/1758-5090/abbb82.
  • Rowan MP, Cancio LC, Elster EA, et al. (2015). Burn wound healing and treatment: Review and advancements. Crit Care 19:243. Available at doi: 10.1186/s13054-015-0961-2.
  • Ryall C, Duarah S, Chen S, et al. (2022). Advancements in skin delivery of natural bioactive products for wound management: A brief review of two decades. Pharmaceutics 14:1072. doi: 10.3390/pharmaceutics14051072.
  • Saghazadeh S, Rinoldi C, Schot M, et al. (2018). Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev 127:138–66. doi: 10.1016/j.addr.2018.04.008.
  • Sanchez MF, Breda SA, Soria EA, et al. (2018). Ciprofloxacin-lidocaine-based hydrogel: development, characterization, and in vivo evaluation in a second-degree burn model. Drug Deliv Transl Res 8:1000–13. doi: 10.1007/s13346-018-0523-7.
  • Seow YX, Yeo CR, Chung HL, Yuk HG. (2014). Plant essential oils as active antimicrobial agents. Crit Rev Food Sci Nutr 54:625–44. doi: 10.1080/10408398.2011.599504.
  • Shabatina T, Vernaya O, Shumilkin A, et al. (2022). Nanoparticles of bioactive metals/metal oxides and their nanocomposites with antibacterial drugs for biomedical applications. Materials (Basel) 15:3602. doi: 10.3390/ma15103602.
  • Shaker DS, Ishak RAH, Ghoneim A, Elhuoni MA. (2019). Nanoemulsion: A review on mechanisms for the transdermal delivery of hydrophobic and hydrophilic drugs. Sci Pharm 87:17. doi: 10.3390/scipharm87030017.
  • Shalaby MA, Anwar MM, Saeed H. (2022). Nanomaterials for application in wound Healing: current state-of-the-art and future perspectives. J Polym Res 29:91. doi: 10.1007/s10965-021-02870-x.
  • Shao XH, Yang X, Zhou Y, et al. (2022). Antibacterial, wearable, transparent tannic acid-thioctic acid-phytic acid hydrogel for adhesive bandages. Soft Matter 18:2814–28. doi: 10.1039/d2sm00058j.
  • Shpichka A, Butnaru D, Bezrukov EA, et al. (2019). Skin tissue regeneration for burn injury. Stem Cell Res Ther 10:94. doi: 10.1186/s13287-019-1203-3.
  • Shu W, Wang Y, Zhang X, et al. (2021). Functional hydrogel dressings for treatment of burn wounds. Front Bioeng Biotechnol 9:788461. doi: 10.3389/fbioe.2021.788461.
  • Simões D, Miguel SP, Ribeiro MP, et al. (2018). Recent advances on antimicrobial wound dressing: A review. Eur J Pharm Biopharm 127:130–41. doi: 10.1016/j.ejpb.2018.02.022.
  • Soriano JL, Calpena AC, Rodríguez-Lagunas MJ, et al. (2021). Endogenous antioxidant cocktail loaded hydrogel for topical wound healing of burns. Pharmaceutics 13:8. doi: 10.3390/pharmaceutics13010008.
  • Soriano-Ruiz JL, Calpena-Campmany AC, Silva-Abreu M, et al. (2020). Design and evaluation of a multifunctional thermosensitive poloxamer-chitosan-hyaluronic acid gel for the treatment of skin burns. Int J Biol Macromol 142:412–22. doi: 10.1016/j.ijbiomac.2019.09.113.
  • Souto EB, Ribeiro AF, Ferreira MI, et al. (2020). New nanotechnologies for the treatment and repair of skin burns infections. Int J Mol Sci 21:393. doi: 10.3390/ijms21020393.
  • Stoica AE, Chircov C, Grumezescu AM. (2020). Hydrogel dressings for the treatment of burn wounds: An up-to-date overview. Materials (Basel) 13:2853. doi: 10.3390/ma13122853.
  • Stone R, Natesan S, Kowalczewski CJ, et al. (2018). Advancements in regenerative strategies through the continuum of burn care. Front Pharmacol 9:672. doi: 10.3389/fphar.2018.00672.
  • Sulastri E, Lesmana R, Zubair MS, et al. (2023). Ulvan/Silver nanoparticle hydrogel films for burn wound dressing. Heliyon 9:e18044. Available at doi: 10.1016/j.heliyon.2023.e18044.
  • Surowiecka A, Strużyna J, Winiarska A, Korzeniowski T. (2022). Hydrogels in burn wound management—A review. Gels 8:122. doi: 10.3390/gels8020122.
  • Tao B, Lin C, Qin X, et al. (2022). Fabrication of gelatin-based and Zn2+-incorporated composite hydrogel for accelerated infected wound healing. Mater Today Bio 13:100216. Available at doi: 10.1016/j.mtbio.2022.100216.
  • Teoh JH, Mozhi A, Sunil V, et al. (2021). 3D printing personalized, photocrosslinkable hydrogel wound dressings for the treatment of thermal burns. Adv Funct Mater 31:2105932.
  • Tiwari VK. (2012). Burn wound: How it differs from other wounds. Indian J Plast Surg 45:364–73. doi: 10.4103/0970-0358.101319.
  • Ullah N, Khan D, Ahmed N, et al. (2023). Lipase-sensitive fusidic acid polymeric nanoparticles based hydrogel for on-demand delivery against MRSA-infected burn wounds. J Drug Deliv Sci Technol 80:104110. doi: 10.1016/j.jddst.2022.104110.
  • Wahid F, Zhong C, Wang HS, et al. (2017). Recent advances in antimicrobial hydrogels containing metal ions and metals/metal oxide nanoparticles. Polymers (Basel) 9:636. doi: 10.3390/polym9120636.
  • Wang F, Gao Y, Li H, et al. (2022). Effect of natural-based biological hydrogels combined with growth factors on skin wound healing. Nanotechnol Rev 11:2493–512. doi: 10.1515/ntrev-2022-0122.
  • Wang FY, Chen Y, Huang YY, Cheng CM. (2021). Transdermal drug delivery systems for fighting common viral infectious diseases. Drug Deliv Transl Res 11:1498–508. Available at doi: 10.1007/s13346-021-01004-6.
  • Wang H, Liu Y, Cai K, et al. (2021). Antibacterial polysaccharide-based hydrogel dressing containing plant essential oil for burn wound healing. Burn Trauma 9:tkab041.
  • Wang M, Huang X, Zheng H, et al. (2021). Nanomaterials applied in wound healing: Mechanisms, limitations and perspectives. J Control Release 337:236–47. doi: 10.1016/j.jconrel.2021.07.017.
  • Wang P, Huang S, Hu Z, et al. (2019). In situ formed anti-inflammatory hydrogel loading plasmid DNA encoding VEGF for burn wound healing. Acta Biomater 100:191–201. doi: 10.1016/j.actbio.2019.10.004.
  • Wang S, Li J, Ma Z, et al. (2021). A sequential therapeutic hydrogel with injectability and antibacterial activity for deep burn wounds’ cleaning and healing. Front Bioeng Biotechnol 9:794769. doi: 10.3389/fbioe.2021.794769.
  • Whittam AJ, Maan ZN, Duscher D, et al. (2016). Challenges and opportunities in drug delivery for wound healing. Adv Wound Care (New Rochelle) 5:79–88. doi: 10.1089/wound.2014.0600.
  • Wilkinson LJ, White RJ, Chipman JK. (2011). Silver and nanoparticles efficacy and safety. J Wound Care 20:543–9. doi: 10.12968/jowc.2011.20.11.543.
  • Xia H, Zhang Y, Xin H, et al. (2022). Metal–phenolic network-based polydopamine@Cu within a polyvinyl alcohol hydrogel film for improved infected wound healing through antibacterial and pro-angiogenesis activity. Mater Des 221:110904. Available at doi: 10.1016/j.matdes.2022.110904.
  • Xiao Y, Zhao H, Ma X, et al. (2022). Hydrogel dressing containing basic fibroblast growth factor accelerating chronic wound healing in aged mouse model. Molecules 27:6361. doi: 10.3390/molecules27196361.
  • Xiong W, Zhang R, Zhou H, et al. (2023). Smart materials in medicine application of nanomedicine and mesenchymal stem cells in burn injuries for the elderly patients. Smart Mater Med 4:78–90. Available at doi: 10.1016/j.smaim.2022.08.001.
  • Yao Y, Zhang A, Yuan C, et al. (2021). Recent trends on burn wound care: Hydrogel dressings and scaffolds. Biomater Sci 9:4523–40. doi: 10.1039/d1bm00411e.
  • Yin C, Han X, Lu Q, et al. (2022). Rhein incorporated silk fibroin hydrogels with antibacterial and anti-inflammatory efficacy to promote healing of bacteria-infected burn wounds. Int J Biol Macromol 201:14–9. doi: 10.1016/j.ijbiomac.2021.12.156.
  • Yu YQ, Yang X, Wu XF, Fan YB. (2021). Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications. Front Bioeng Biotechnol 9:646554. doi: 10.3389/fbioe.2021.646554.
  • Yuan M, Liu K, Jiang T, et al. (2022). GelMA/PEGDA microneedles patch loaded with HUVECs ‑ derived exosomes and Tazarotene promote diabetic wound healing. J Nanobiotechnology 20:147. Available at doi: 10.1186/s12951-022-01354-4.
  • Zhang M, Chen S, Zhong L, et al. (2020). Zn2+-loaded TOBC nanofiber-reinforced biomimetic calcium alginate hydrogel for antibacterial wound dressing. Int J Biol Macromol 143:235–42. doi: 10.1016/j.ijbiomac.2019.12.046.
  • Zhang X, Qin M, Xu M, et al. (2021). The fabrication of antibacterial hydrogels for wound healing. Eur. Polym. J 146:110268. doi: 10.1016/j.eurpolymj.2021.110268.
  • Zhang Y, He W, Zhang S, et al. (2022). Poloxam thermosensitive hydrogels loaded with hFGF2-linked camelina lipid droplets accelerate skin regeneration in deep second-degree burns. Int J Mol Sci 23:12716. doi: 10.3390/ijms232112716.
  • Zhang Y, Wang T, He J, Dong J. (2016). Growth factor therapy in patients with partial-thickness burns: A systematic review and meta-analysis. Int Wound J 13:354–66. doi: 10.1111/iwj.12313.
  • Zhong Y, Xiao H, Seidi F, Jin Y. (2020). Natural polymer-based antimicrobial hydrogels without synthetic antibiotics as wound dressings. Biomacromolecules 21:2983–3006. doi: 10.1021/acs.biomac.0c00760.
  • Zhou J, Cha R, Wu Z, et al. (2023). An injectable, natural peptide hydrogel with potent antimicrobial activity and excellent wound healing-promoting effects. Nano Today 49:101801. doi: 10.1016/j.nantod.2023.101801.
  • Zhu L, Chen L. (2022). Facile design and development of nano-clustery graphene-based macromolecular protein hydrogel loaded with ciprofloxacin to antibacterial improvement for the treatment of burn wound injury. Polym Bull (Berl) 79:7953–68. doi: 10.1007/s00289-021-03875-8.
  • Zia T, Usman M, Sabir A, et al. (2020). Development of inter-polymeric complex of anionic polysaccharides, alginate/k-carrageenan bio-platform for burn dressing. Int J Biol Macromol 157:83–95. doi: 10.1016/j.ijbiomac.2020.04.157.