1,911
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Breaking boundaries: the advancements in transdermal delivery of antibiotics

, , &
Article: 2304251 | Received 28 Aug 2023, Accepted 18 Dec 2023, Published online: 19 Jan 2024

References

  • Abdellatif AA, Tawfeek HM. (2016). Transfersomal nanoparticles for enhanced transdermal delivery of clindamycin. AAPS PharmSciTech 17:1–15. doi: 10.1208/s12249-015-0441-7.
  • Abu-Sini MK, Maharmah RA, Abulebdah DH, et al. (2023). Isolation and identification of coliform bacteria and multidrug-resistant Escherichia coli from water intended for drug compounding in community pharmacies in Jordan. Healthcare 11:299. doi: 10.3390/healthcare11030299.
  • Alfei S, Schito AM. and A.M. (2022). Schito, β-Lactam Antibiotics and β-Lactamase enzymes inhibitors, Part 2: our limited resources. Pharmaceuticals 15:476. doi: 10.3390/ph15040476.
  • Alkilani AZ, McCrudden MT, Donnelly RF. (2015). Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the Barrier Properties of the stratum corneum. Pharmaceutics 7:438–70. doi: 10.3390/pharmaceutics7040438.
  • Alkilani AZ, Nasereddin J. (2022). Beneath the Skin: A Review of Current Trends and Future Prospects of Transdermal Drug Delivery Systems 14:1152.
  • Alotaibi BS, Ashames A, Buabeid M, et al. (2022). A new approach for the management of Escherichia coli and Klebsiella pneumonia by using cefixime-based bionanocomposite films. J Exp Nanosci 17:389–419. doi: 10.1080/17458080.2022.2080197.
  • Altun E, Yuca E, Ekren N, et al. (2021). Kinetic release studies of antibiotic patches for local transdermal delivery. Pharmaceutics 13:613., doi: 10.3390/pharmaceutics13050613.
  • Antagonists TNF. (2012). LiverTox: Clinical and research information on drug-Induced liver injury. Bethesda, MD, USA: National Institute of Diabetes and Digestive and Kidney Diseases,
  • Arai J, Niikura R. (2021). Use of antibiotics and probiotics reduces the risk of metachronous gastric cancer after endoscopic resection. Biology 10:455.
  • Bagyalakshmi J, Vamsikrishna RP, Manavalan R, et al. (2007). Formulation development and in vitro and in vivo evaluation of membrane-moderated transdermal systems of ampicillin sodium in ethanol: pH 4.7 buffer solvent system. AAPS PharmSciTech 8:7–E55. doi: 10.1208/pt0801007.
  • Bandyopadhyay D. (2021). Topical antibacterials in dermatology. Indian J Dermatol 66:117–25. doi: 10.4103/ijd.IJD_99_18.
  • Basheer HA, Alhusban MA, Zaid Alkilani A, et al. (2023). Niosomal delivery of Celecoxib and Metformin for targeted breast cancer treatment. Cancers 15:5004. doi: 10.3390/cancers15205004.
  • Batt MD, Fairhurst E. (1986). Hydration of the stratum corneum. Int J Cosmet Sci 8:253–64. doi: 10.1111/j.1467-2494.1986.tb00583.x.
  • Benson HA. (2005). Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv 2:23–33. doi: 10.2174/1567201052772915.
  • Bush K, Bradford PA. (2016). β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med 6:a025247. doi: 10.1101/cshperspect.a025247.
  • Charles L, Segreti J. (1997). Choosing the right macrolide antibiotic. A guide to selection. Drugs 53:349–57. doi: 10.2165/00003495-199753030-00002.
  • Chopra I, Roberts M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–60 ; second page, table of contents. doi: 10.1128/MMBR.65.2.232-260.2001.
  • Craig WA, Andes DR. (2015). Chapter 1. 21 - Cephalosporins, in Mandell, Douglas, and Bennett’s Principles and practice of infectious diseases (eighth edition), J.E. Bennett, R. Dolin, and M.J. Blaser, Editors. W.B. Saunders: Philadelphia, 278–92.e4.
  • Cui Z, Zheng Z, Lin L, et al. (2018). Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery. Adv Polym Technol 37:1917–28. doi: 10.1002/adv.21850.
  • Demain AL, Elander R. P. (1999). The beta-lactam antibiotics: past, present, and future. Antonie Van Leeuwenhoek 75:5–19. doi: 10.1023/a:1001738823146.
  • Eiamphungporn W, Schaduangrat N, Malik AA, et al. (2018). Tackling the antibiotic resistance caused by class A β-lactamases through the use of β-lactamase inhibitory protein. Int J Mol Sci 19:2222. doi: 10.3390/ijms19082222.
  • Erkus H, Bedir T, Kaya E, et al. (2023). Innovative transdermal drug delivery system based on amoxicillin-loaded gelatin methacryloyl microneedles obtained by 3D printing. Materialia 27:101700. doi: 10.1016/j.mtla.2023.101700.
  • Fan Q, Sirkar KK, Wu J. (2009). A thermo-sensitive release system based on polymeric membrane for transdermal delivery of doxycycline HCl. J Membr Sci 337:175–81. doi: 10.1016/j.memsci.2009.03.032.
  • Fanani ML, Nocelli NE, Zulueta Díaz YdlM. (2022). What can we learn about amphiphile-membrane interaction from model lipid membranes? Biochim Biophys Acta Biomembr 1864:183781. doi: 10.1016/j.bbamem.2021.183781.
  • Fang C-L, Aljuffali IA, Li Y-C, et al. (2014). Delivery and targeting of nanoparticles into hair follicles. Ther Deliv 5:991–1006. doi: 10.4155/tde.14.61.
  • Fassbender M, Lode H, Schiller C, et al. (1996). Comparative pharmacokinetics of macrolide antibiotics and concentrations achieved in polymorphonuclear leukocytes and saliva. Clin Microbiol Infect 1:235–43., doi: 10.1016/S1198-743X(15)60281-6.
  • Gao W, Chen Y, Zhang Y, et al. (2018). Nanoparticle-based local antimicrobial drug delivery. Adv Drug Deliv Rev 127:46–57. doi: 10.1016/j.addr.2017.09.015.
  • Ge X, Wei M, He S, et al. (2019). Advances of non-ionic surfactant vesicles (Niosomes) and their application in drug delivery. Pharmaceutics 11:55. doi: 10.3390/pharmaceutics11020055.
  • Główka E, Wosicka-Frąckowiak H, Hyla K, et al. (2014). Polymeric nanoparticles-embedded organogel for roxithromycin delivery to hair follicles. Eur J Pharm Biopharm 88:75–84.
  • Godin B, Touitou E. (2005). Erythromycin ethosomal systems: physicochemical characterization and enhanced antibacterial activity. CDD 2:269–75. doi: 10.2174/1567201054367931.
  • González-Vázquez P, Larrañeta E, McCrudden MTC, et al. (2017). Transdermal delivery of gentamicin using dissolving microneedle arrays for potential treatment of neonatal sepsis. J Control Release 265:30–40. doi: 10.1016/j.jconrel.2017.07.032.
  • Grübel P & Cave D R (1998). Factors affecting solubility and penetration of clarithromycin through gastric mucus. Aliment Pharmacol Ther 12:569–76. doi: 10.1046/j.1365-2036.1998.00329.x.
  • Gu Y, Bian Q, Zhou Y, et al. (2022). Hair follicle-targeting drug delivery strategies for the management of hair follicle-associated disorders. Asian J Pharm Sci 17:333–52.
  • Guo K, et al. (2021). Effect of minocycline hydrochloride combined with photodynamic therapy on skin barrier function of patients with acne. Am J Transl Res 13:8427–32.
  • Gusliakova O, Verkhovskii R, Abalymov A, et al. (2021). Transdermal platform for the delivery of the antifungal drug naftifine hydrochloride based on porous vaterite particles. Mater Sci Eng C Mater Biol Appl 119:111428. doi: 10.1016/j.msec.2020.111428.
  • Hamed R, Abu Alata W, Abu-Sini M, et al. (2023). Development and comparative evaluation of ciprofloxacin nanoemulsion-loaded bigels prepared using different ratios of oleogel to hydrogels. Gels 9:592. doi: 10.3390/gels9070592.
  • Hamed R, Mahmoud NN, Alnadi SH, et al. (2020). Diclofenac diethylamine nanosystems-loaded bigels for topical delivery: development, rheological characterization, and release studies. Drug Dev Ind Pharm 46:1705–15. doi: 10.1080/03639045.2020.1820038.
  • Hasanpouri A, et al. (2018). Improvement of dermal delivery of tetracycline using vesicular nanostructures. Res Pharm Sci 13:385–93.
  • Hatanaka T, Kamon T, Morigaki S, et al. (2000). Ion pair skin transport of a zwitterionic drug, cephalexin. J Control Release 66:63–71. doi: 10.1016/S0168-3659(99)00259-X.
  • Honary S, Zahir F. (2012). Effect of process factors on the properties of doxycycline nanovesicles. Trop J Pharm Res 11:169–75. doi: 10.4314/tjpr.v11i2.1.
  • Hubschwerlen C. (2007). 7.17 - β-Lactam Antibiotics. In: Comprehensive medicinal chemistry II, J.B. Taylor and D.J. Triggle, editors. Elsevier: Oxford. 479–518.
  • Hutton ARJ, McCrudden MTC, Larrañeta E, et al. (2020). Influence of molecular weight on transdermal delivery of model macromolecules using hydrogel-forming microneedles: potential to enhance the administration of novel low molecular weight biotherapeutics. J Mater Chem B 8:4202–9. doi: 10.1039/D0TB00021C.
  • Iqbal H, Khan BA, Khan ZU, et al. (2020). Fabrication, physical characterizations and in vitro antibacterial activity of cefadroxil-loaded chitosan/poly(vinyl alcohol) nanofibers against Staphylococcus aureus clinical isolates. Int J Biol Macromol 144:921–31. doi: 10.1016/j.ijbiomac.2019.09.169.
  • Ita K. (2016). Perspectives on Transdermal Electroporation. Pharmaceutics 8:9. doi: 10.3390/pharmaceutics8010009.
  • Jamaledin R, et al. (2020). Advances in antimicrobial microneedle patches for combating infections. Adv Mater 32:e2002129.
  • Jeong WY, Kwon M, Choi HE, et al. (2021). Recent advances in transdermal drug delivery systems: a review. Biomater Res 25:24. doi: 10.1186/s40824-021-00226-6.
  • Kanoh S, Rubin BK. (2010). Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev 23:590–615. doi: 10.1128/CMR.00078-09.
  • Kashani-Asadi-Jafari F, Hadjizadeh A. (2022). Niosome-encapsulated doxycycline hyclate for potentiation of acne therapy: formulation and characterization. PNT 10:56–68. doi: 10.2174/2211738510666220224103406.
  • Kazi KM, et al. (2010). Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res 1:374–80.
  • Khodaeiani E, Fouladi RF, Amirnia M, et al. (2013). Topical 4% nicotinamide vs. 1% clindamycin in moderate inflammatory acne vulgaris. Int J Dermatol 52:999–1004. doi: 10.1111/ijd.12002.
  • Khoshnood S, Shirani M, Dalir A, et al. (2022). Antiviral effects of azithromycin: a narrative review. Biomed Pharmacother 147:112682. doi: 10.1016/j.biopha.2022.112682.
  • Kircik L, et al. (2020). Formulation and profile of FMX101 4% minocycline topical foam for the treatment of Acne Vulgaris. J Clin Aesthet Dermatol 13:14–21.
  • Koopaei MN, et al. (2012). Enhanced antibacterial activity of roxithromycin loaded pegylated poly lactide-co-glycolide nanoparticles. DARU J. Pharm. Sci 20:1–8.
  • Kostrzębska A, et al. (2023). Effect of hydrogel substrate components on the stability of tetracycline hydrochloride and swelling activity against model skin sebum. Int J Mol Sci 24:2678.
  • Kreft B, Wohlrab J. (2022). Contact allergies to topical antibiotic applications. ALS 6:18–26. doi: 10.5414/ALX02253E.
  • Kumar TR, Soppimath K, Nachaegari SK. (2006). Novel delivery technologies for protein and peptide therapeutics. Curr Pharm Biotechnol 7:261–76. doi: 10.2174/138920106777950852.
  • Kwon JS, Kim DY, Seo HW, et al. (2014). Preparation of erythromycin-loaded poly(vinylalcohol) film and investigation of its feasibility as a transdermal delivery carrier. Tissue Eng Regen Med 11:211–6. doi: 10.1007/s13770-014-0018-7.
  • Leong MY, Kong YL, Burgess K, et al. (2023). Recent development of nanomaterials for transdermal drug delivery. Biomedicines 11:1124. doi: 10.3390/biomedicines11041124.
  • Lima LM, Silva B. N M d, Barbosa G, et al. (2020). β-lactam antibiotics: an overview from a medicinal chemistry perspective. Eur J Med Chem 208:112829. doi: 10.1016/j.ejmech.2020.112829.
  • Liu L, Zhao W, Ma Q, et al. (2023). Functional nano-systems for transdermal drug delivery and skin therapy. Nanoscale Adv 5:1527–58. doi: 10.1039/d2na00530a.
  • Maji R, Omolo CA, Jaglal Y, et al. (2021). A transferosome-loaded bigel for enhanced transdermal delivery and antibacterial activity of vancomycin hydrochloride. Int J Pharm 607:120990. doi: 10.1016/j.ijpharm.2021.120990.
  • Malinovskaja-Gomez K, Labouta HI, Schneider M, et al. (2016). Transdermal iontophoresis of flufenamic acid loaded PLGA nanoparticles. Eur J Pharm Sci 89:154–62. doi: 10.1016/j.ejps.2016.04.034.
  • Mannem V, Nanjarapalle C, Stagni G. (2014). Iontophoresis of amoxicillin and cefuroxime: rapid therapeutic concentrations in skin. Drug Dev Ind Pharm 40:325–9. doi: 10.3109/03639045.2012.760579.
  • Matsumoto H, Shiotani A, Graham DY. (2019). Current and future treatment of helicobacter pylori infections. Adv Exp Med Biol 1149:211–25.
  • McAlister E, Dutton B, Vora LK, et al. (2021). Directly compressed tablets: a novel drug-containing reservoir combined with hydrogel-forming microneedle arrays for transdermal drug delivery. Adv Healthcare Materials 10:2001256. doi: 10.1002/adhm.202001256.
  • Mehta D, Sharma AK. (2016). Cephalosporins: a review on imperative class of antibiotics. Inventi Rapid: Mol Pharmacol 1:1–6.
  • Nasrollahzadeh M, Ganji F, Taghizadeh SM, et al. (2022). Drug in adhesive transdermal patch containing antibiotic-loaded solid lipid nanoparticles. J Biosci Bioeng 134:471–6.
  • Odorici G, Monfrecola G, Bettoli V. (2021). Tetracyclines and photosensitive skin reactions: a narrative review. Dermatol. Ther 34:e14978.
  • Pancu DF, Scurtu A, Macasoi IG, et al. (2021). Antibiotics: conventional therapy and natural compounds with antibacterial activity—a pharmaco-toxicological screening. Antibiotics 10:401. doi: 10.3390/antibiotics10040401.
  • Parsad D, Pandhi R, Dogra S. (2003). A guide to selection and appropriate use of macrolides in skin infections. Am J Clin Dermatol 4:389–97. doi: 10.2165/00128071-200304060-00003.
  • Patel PH, Hashmi MF. (2022). Macrolides, in StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.:
  • Pérez-Martínez CJ, Morales Chávez SD, del Castillo-Castro T, et al. (2016). Electroconductive nanocomposite hydrogel for pulsatile drug release. React Funct Polym 100:12–7. doi: 10.1016/j.reactfunctpolym.2015.12.017.
  • Periti P, Mazzei T, Mini E, et al. (1989). Clinical pharmacokinetic properties of the macrolide antibiotics. Clin Pharmacokinet 16:193–214. doi: 10.2165/00003088-198916040-00001.
  • Polat BE, Hart D, Langer R, et al. (2011). Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J Control Release 152:330–48. doi: 10.1016/j.jconrel.2011.01.006.
  • Prausnitz MR, Langer R. (2008). Transdermal drug delivery. Nat Biotechnol 26:1261–8. doi: 10.1038/nbt.1504.
  • Puri A, et al. (2019). Development of a transdermal delivery system for tenofovir alafenamide, a prodrug of tenofovir with potent antiviral activity against HIV and HBV. Pharmaceutics 11:173.
  • Qin Y-H, Jiao H-S, Li A-S, et al. (2015). Transdermal application of azithromycin-amlodipine-heparin gel enhances survival of infected random ischaemic flap. J Plast Surg Hand Surg 49:319–26. doi: 10.3109/2000656X.2015.1042386.
  • Rabiei M, Kashanian S, Samavati SS, et al. (2020). Nanomaterial and advanced technologies in transdermal drug delivery. J Drug Target 28:356–67. doi: 10.1080/1061186X.2019.1693579.
  • Rahimpour Y, Javadzadeh Y, Hamishehkar H. (2016). Solid lipid microparticles for enhanced dermal delivery of tetracycline HCl. Colloids Surf B Biointerfaces 145:14–20. doi: 10.1016/j.colsurfb.2016.04.034.
  • Roberts DJ. (2014). Erythromycin. In: P. Wexler, editor Encyclopedia of toxicology (third edition),. Academic Press: Oxford, 453–8.
  • Safdari H, Neshani A, Sadeghian A, et al. (2014). Potent and selective inhibitors of class A β-lactamase: 7-prenyloxy coumarins. J Antibiot 67:373–7. doi: 10.1038/ja.2014.9.
  • Salatin S, Jelvehgari M. (2020). Desirability function approach for development of a thermosensitive and bioadhesive nanotransfersome-hydrogel hybrid system for enhanced skin bioavailability and antibacterial activity of cephalexin. Drug Dev Ind Pharm 46:1318–33. doi: 10.1080/03639045.2020.1788068.
  • Shaaban MI, Shaker MA, Mady FM. (2017). Imipenem/cilastatin encapsulated polymeric nanoparticles for destroying carbapenem-resistant bacterial isolates. J Nanobiotechnol 15:29. doi: 10.1186/s12951-017-0262-9.
  • Shehab-ElDin AN, Sobh RA, Rabie AM, et al. (2023). Polyamide 6/tallow modified clay nanofibrous mat coupled with hydrogels for potential topical/transdermal delivery of doxycycline hydrochloride. J Pharm Investig 53:307–21. doi: 10.1007/s40005-022-00598-4.
  • Siddiqui A, Jain P. (2022). Investigation of a minocycline-loaded nanoemulgel for the treatment of Acne Rosacea. Biochem Pharmacol 14:20–8.
  • Spížek J, Řezanka T. (2017). Lincosamides: chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochem. Pharmacol 133:20–8. doi: 10.1016/j.bcp.2016.12.001.
  • Tenson T, Lovmar M, Ehrenberg M. (2003). The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. J Mol Biol 330:1005–14. doi: 10.1016/s0022-2836(03)00662-4.
  • Thakuria B, Lahon K. (2013). The beta lactam antibiotics as an empirical therapy in a developing country: an update on their current status and recommendations to counter the resistance against them. J Clin Diagn Res 7:1207–14.
  • Tiraton T, Suwantong O, Chuysinuan P, et al. (2022). Biodegradable microneedle fabricated from sodium alginate-gelatin for transdermal delivery of clindamycin. Mater Today Commun 32:104158. doi: 10.1016/j.mtcomm.2022.104158.
  • Vanoverschelde A, Oosterloo BC, Ly NF, et al. (2021). Macrolide-associated ototoxicity: a cross-sectional and longitudinal study to assess the association of macrolide use with tinnitus and hearing loss. J Antimicrob Chemother 76:2708–16. doi: 10.1093/jac/dkab232.
  • Vázquez-Laslop N, Mankin AS. (2018). How Macrolide Antibiotics Work. Trends Biochem Sci 43:668–84. doi: 10.1016/j.tibs.2018.06.011.
  • Vitiello A, Ferrara F. (2022). A short focus, azithromycin in the treatment of respiratory viral infection COVID-19: efficacy or inefficacy? Immunol Res 70:129–33. doi: 10.1007/s12026-021-09244-x.
  • Wang F-Y, Chen Y, Huang Y-Y, et al. (2021). Transdermal drug delivery systems for fighting common viral infectious diseases. Drug Deliv Transl Res 11:1498–508. doi: 10.1007/s13346-021-01004-6.
  • Whitman MS, Tunkel AR. (1992). Azithromycin and clarithromycin: overview and comparison with erythromycin. Infect Control Hosp Epidemiol 13:357–68.
  • Yang P, Qin Y-H, Zhong L, et al. (2013). Prevention of skin flap infection by transdermal penetration of azithromycin in rats. Ann Plast Surg 71:214–8. doi: 10.1097/SAP.0b013e31823dce96.
  • Yang Q, Hughes TA. (2020). Inhibition of SARS-CoV-2 Viral Entry upon Blocking N- and O-Glycan Elaboration. elife 9:e61552.
  • Yu X, Zhao J, Fan D. (2022). A dissolving microneedle patch for ­antibiotic/Enzymolysis/Photothermal triple therapy against bacteria and their biofilms. J Chem Eng 437:135475. doi: 10.1016/j.cej.2022.135475.
  • Yu Y-Q, Yang X, Wu X-F, et al. (2021). Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: novel strategies for effective transdermal applications. Front Bioeng Biotechnol 9:646554. doi: 10.3389/fbioe.2021.646554.
  • Zaid Alkilani A, Abo-Zour H, Basheer HA, et al. (2023). Development and evaluation of an innovative approach using niosomes based polymeric microneedles to deliver dual antioxidant drugs. Polymer 15:1962. doi: 10.3390/polym15081962.
  • Zaid Alkilani A, Abu-Zour H, Alshishani A, et al. (2022). Formulation and evaluation of niosomal alendronate sodium encapsulated in polymeric microneedles: in vitro studies, stability study and cytotoxicity study. Nanomaterials 12:3570. doi: 10.3390/nano12203570.
  • Zaid Alkilani A, Hamed R, Abdo H, et al. (2022). Formulation and evaluation of azithromycin-loaded niosomal gel: optimization, in vitro studies, rheological characterization, and cytotoxicity study. ACS Omega 7:39782–93. doi: 10.1021/acsomega.2c03762.
  • Zaid Alkilani A, Musleh B, Hamed R. (2023). Preparation and characterization of patch loaded with clarithromycin nanovesicles for transdermal drug delivery. J Funct Biomater 14:57.
  • Zaid Alkilani A, Nimrawi S, Al-Nemrawi NK, et al. (2022). Microneedle-assisted transdermal delivery of amlodipine besylate loaded nanoparticles. Drug Dev Ind Pharm 48:322–32. doi: 10.1080/03639045.2022.2112694.
  • Zaidi STR, Weier NE. (2019). bacterial infections and the role of the pharmacist. In: Z.-U.-D. Babar, Editor. Encyclopedia of pharmacy practice and clinical pharmacy. Elsevier: Oxford. 730–41.
  • Zakrewsky M, Lovejoy KS, Kern TL, et al. (2014). Ionic liquids as a class of materials for transdermal delivery and pathogen neutralization. Proc Natl Acad Sci USA 111:13313–8. doi: 10.1073/pnas.1403995111.
  • Zhao L, Vora LK, Kelly SA, et al. (2023). Hydrogel-forming microarray patch mediated transdermal delivery of tetracycline hydrochloride. J Control Release 356:196–204.