1,195
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Photo-crosslinkable polyester microneedles as sustained drug release systems toward hypertrophic scar treatment

, , , , , , & show all
Article: 2305818 | Received 27 Jul 2023, Accepted 22 Dec 2023, Published online: 29 Feb 2024

References

  • Andersen TE , Andersen AJ , Petersen RS , et al. ( 2018). Drug loaded biodegradable polymer microneedles fabricated by hot embossing. Microelectron Eng 195: 1–16. doi:10.1016/j.mee.2018.03.024.
  • Lorden ER , Miller KJ , Bashirov L , et al. ( 2015). Mitigation of hypertrophic scar contraction via an elastomeric biodegradable scaffold. Biomaterials 43: 61–70. doi:10.1016/j.biomaterials.2014.12.003.
  • Johnson PM , Meinhold KL , Ohl NR , et al. ( 2022). Surfactant molecular properties control location in emulsion electrospun fibers and dictate resulting fiber properties. Macromolecules 55: 9186–95. doi:10.1021/acs.macromol.2c00998.
  • Aldawood FK , Andar A , Desai S. ( 2021). A comprehensive review of microneedles: Types, materials, processes, characterizations and applications. Polymers (Basel) 13: 2815. doi:10.3390/polym13162815.
  • Arslan A , Steiger W , Roose P , et al. ( 2021). Polymer architecture as key to unprecedented high-resolution 3D-printing performance: The case of biodegradable hexa-functional telechelic urethane-based poly-ε-caprolactone. Mater Today 44: 25–39. doi:10.1016/j.mattod.2020.10.005.
  • Bhadale RS , Londhe VY. ( 2021). A systematic review of carbohydrate-based microneedles: current status and future prospects. J Mater Sci Mater Med 32: 89–106. doi:10.1007/s10856-021-06559-x.
  • Buthylated hydroxytoluene, Safety data sheet - Buthylated hydroxytoluene. ( n.d). Safety data sheet. https://www.sigmaaldrich.com/BE/en/sds/aldrich/w218405.
  • Cheng J , Chen G , Zhu Y. ( 2017). Fe3O4/polycaprolactone microneedles with controlled drug delivery and magnetic hyperthermia. Nano Adv 2: 29–35. doi:10.22180/na200.
  • Claeys B , Vervaeck A , Hillewaere XKD , et al. ( 2015). Thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding. Eur J Pharm Biopharm 90: 44–52. doi:10.1016/j.ejpb.2014.11.003.
  • Costa ED , Priotti J , Orlandi S , et al. ( 2016). Unexpected solvent impact in the crystallinity of praziquantel/poly(vinylpyrrolidone) formulations. A solubility, DSC and solid-state NMR study. Int J Pharm 511: 983–93. doi:10.1016/j.ijpharm.2016.08.009.
  • De Decker I , Beeckman A , Hoeksema H , et al. ( 2023a). Pressure therapy for scars: Myth or reality? A systematic review. Burns 49: 741–56. doi:10.1016/j.burns.2023.03.007.
  • De Decker I , Hoeksema H , Vanlerberghe E , et al. ( 2023b). Occlusion and hydration of scars: moisturizers versus silicone gels. Burns 49: 365–79. doi:10.1016/j.burns.2022.04.025.
  • De Decker I , Logé T , Hoeksema H , et al. ( 2023c). Dissolving microneedles for effective and painless intradermal drug delivery in various skin conditions: A systematic review. J Dermatol 50: 422–44. doi:10.1111/1346-8138.16732.
  • De Decker I , Szabó A , Hoeksema H , et al. ( 2023d). Treatment of Hypertrophic Scars with Corticoid-Embedded Dissolving Microneedles. J Burn Care Res 44: 158–69. doi:10.1093/jbcr/irac165.
  • Du G , Sun X. ( 2020). Current advances in sustained release microneedles. Pharm Fronts 02: e11–e22. doi:10.1055/s-0040-1701435.
  • Gainanova GA , Zhil’tsova EP , Kudryavtseva LA , et al. ( 2006). Aggregation and catalysis in a nonionic surfactant-polyethylenimine-chloroform system. Colloid J 68: 533–40. doi:10.1134/S1061933X06050024.
  • Gauglitz GG , Korting HC , Pavicic T , et al. ( 2011). Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med 17: 113–25. doi:10.2119/molmed.2009.00153.
  • Hardy IJ , Cook WG , Melia CD. ( 2006). Compression and compaction properties of plasticised high molecular weight hydroxypropylmethylcellulose (HPMC) as a hydrophilic matrix carrier. Int J Pharm 311: 26–32. doi:10.1016/j.ijpharm.2005.12.025.
  • Heng WSP, Wan LSC, Ang TSH. (1990). Role of surfactant on drug release from tablets. Drug Dev Ind Pharm 16: 951–62, doi: 10.3109/03639049009114921.
  • Houben A , Van Vlierberghe S , Dubruel P. ( 2014). Novel urethane based materials, derivatives, methods of their preparation and uses. International Application PCT/EP2016/065391, 30 June.
  • Izumikawa S , Yoshioka S , Aso Y , Takeda Y. ( n.d). Preparation of poly (I-lactide) microspheres of different crystalline morphology and effect of crystalline morphology on drug release rate. J Control Release15: 133–40
  • Jiang Z , Zhao L , He F , et al. ( 2021). Palmatine-loaded electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds accelerate wound healing and inhibit hypertrophic scar formation in a rabbit ear model. J Biomater Appl 35: 869–86. doi:10.1177/0885328220950060.
  • Kapourani A , Tzakri T , Valkanioti V , et al. ( 2021). Drug crystal growth in ternary amorphous solid dispersions: Effect of surfactants and polymeric matrix-carriers. Int J Pharm X 3: 100086. doi:10.1016/j.ijpx.2021.100086.
  • Khan S , York P , Shah M , Khan J. A Stable Hydrocortisone Nanosuspension for Improved Dissolution: Preparation, Characterization and In Vitro Evaluation Vitiligo and Melasma View project Natural herbal medicines View project, (2017). https://www.researchgate.net/publication/319528720.
  • Ko P-T , Lee I-C , Chen M-C , Tsai S-W. ( n.d). Polymer microneedles fabricated from PCL and PCL/PEG blends for transdermal delivery of hydrophilic compounds. J Taiwan Inst Chem Eng 51: 1–8. doi:10.1016/j.jtice.2015.01.003.
  • Koyani RD. ( 2020). Synthetic polymers for microneedle synthesis: from then to now. J Drug Deliv Sci Technol 60: 102071. doi:10.1016/j.jddst.2020.102071.
  • Lin S , Quan G , Hou A , et al. ( 2019). Strategy for hypertrophic scar therapy: improved delivery of triamcinolone acetonide using mechanically robust tip-concentrated dissolving microneedle array. J Control Release 306: 69–82. doi:10.1016/j.jconrel.2019.05.038.
  • Li X , Xu Q , Zhang P , et al. ( 2019). Cutaneous microenvironment responsive microneedle patch for rapid gene release to treat subdermal tumor. J Control Release 314: 72–80. doi:10.1016/j.jconrel.2019.10.016.
  • Mondal D , Griffith M , Venkatraman SS. ( 2016). Polycaprolactone-based biomaterials for tissue engineering and drug delivery: current scenario and challenges. Int J Polym Mater Polym Biomater 65: 255–65. doi:10.1080/00914037.2015.1103241.
  • Nagarkar R , Singh M , Nguyen HX , Jonnalagadda S. ( 2020). A review of recent advances in microneedle technology for transdermal drug delivery. J Drug Deliv Sci Technol 59: 101923. doi:10.1016/j.jddst.2020.101923.
  • O’Neil, MJ. (2021). The Merck Index: An encyclopedia of chemicals, drugs, and biologicals. 13th ed. NJ, Merck: Whitehouse Station.
  • Orozco-Castellanos LM , Marcos-Fernández A , Martínez-Richa A. ( 2011). Hydrolytic degradation of poly(ε-caprolactone) with different end groups and poly(ε-caprolactone-co-γ-butyrolactone): Characterization and kinetics of hydrocortisone delivery. Polymers for Advanced Techs 22: 430–6. doi:10.1002/pat.1531.
  • Park J-H , Allen MG , Prausnitz M. ( 2005). Biodegradable polymer microneedles fabrication mechanics and transdermal drug delivery. J Control Release 104: 51–66. doi:10.1016/j.jconrel.2005.02.002.
  • Park JH , Allen MG , Prausnitz MR. ( 2006). Polymer microneedles for controlled-release drug delivery. Pharm Res 23: 1008–19. doi:10.1007/s11095-006-0028-9.
  • Phenotiazine, Safety data sheet - Phenotiazine, Safety Data Sheet. ( n.d). https://www.sigmaaldrich.com/BE/en/sds/aldrich/p14831 (accessed May 18, 2023).
  • Prausnitz MR. ( 2004). Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 56: 581–7. doi:10.1016/j.addr.2003.10.023.
  • Qi S , Roser S , Edler KJ , et al. ( 2013). Insights into the role of polymer-surfactant complexes in drug solubilisation/stabilisation during drug release from solid dispersions. Pharm Res 30: 290–302. doi:10.1007/s11095-012-0873-7.
  • Rask MB , Knopp MM , Olesen NE , et al. ( 2018). Comparison of two DSC-based methods to predict drug-polymer solubility. Int J Pharm 540: 98–105. doi:10.1016/j.ijpharm.2018.02.002.
  • Solaiman DKY , Ashby RD , Zerkowski JA , et al. ( 2015). Control-release of antimicrobial sophorolipid employing different biopolymer matrices. Biocatal Agric Biotechnol 4: 342–8. doi:10.1016/j.bcab.2015.06.006.
  • Tan CWX , Tan WD , Yow RSAP , Wong DWK , Tey HL. ( n.d). Dissolving triamcinolone-embedded microneedles for the treatment of keloids: a single-blinded intra-individual controlled clinical trial. doi:10.6084/m9.figshare.9009647.
  • Thijssen Q , Parmentier L , Augustyniak E , et al. ( 2022). From chain growth to step growth polymerization of photoreactive poly-ε-caprolactone: the network topology of bioresorbable networks as tool in tissue engineering. Adv Funct Mater 32: 1–14. doi:10.1002/adfm.202108869.
  • Triphenylphosphine. ( n.d). Safety Data Sheet - EN - (23253991) TRIPHENYLPHOSPHINE. (TPP) [603-35-0], Safety Data Sheet.
  • Van Renterghem J , Dhondt H , Verstraete G , et al. ( 2018). The impact of the injection mold temperature upon polymer crystallization and resulting drug release from immediate and sustained release tablets. Int J Pharm 541: 108–16. doi:10.1016/j.ijpharm.2018.01.053.
  • Vermoesen E , Cordeels E , Schaubroeck D , et al. ( 2023). Photo-crosslinkable biodegradable polymer coating to control fertilizer release. Eur Polym J 186: 111835. doi:10.1016/j.eurpolymj.2023.111835.
  • Wang L , Yang J , Ran B , et al. ( 2017). Small molecular TGF-β1-inhibitor-loaded electrospun fibrous scaffolds for preventing hypertrophic scars. ACS Appl Mater Interf 9: 32545–53. doi:10.1021/acsami.7b09796.
  • Wei-Ze L , Mei-Rong H , Jian-Ping Z , et al. ( 2010). Super-short solid silicon microneedles for transdermal drug delivery applications. Int J Pharm 389: 122–9. doi:10.1016/j.ijpharm.2010.01.024.
  • Yavuz B , Chambre L , Harrington K , et al. ( 2020). Silk fibroin microneedle patches for the sustained release of levonorgestrel. ACS Appl Bio Mater 3: 5375–82. doi:10.1021/acsabm.0c00671.