927
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhanced anti-glioma activity of annonaceous acetogenins based on a novel liposomal co-delivery system with ginsenoside Rh2

, , &
Article: 2324716 | Received 16 Aug 2023, Accepted 14 Feb 2024, Published online: 31 Mar 2024

References

  • Aguilar-Hernández G, Vivar-Vera MdLÁ, García-Magaña MdL, et al. (2020). Ultrasound-assisted extraction of total acetogenins from the soursop fruit by response surface methodology. Molecules 25:1. doi: 10.3390/molecules25051139.
  • Alavi SE, Raza A, Koohi Moftakhari Esfahani M, et al. (2022). Carboplatin niosomal nanoplatform for potentiated chemotherapy. J Pharm Sci 111:3029–12. doi: 10.1016/j.xphs.2022.06.002.
  • Ao H, Li HW, Lu LK, et al. (2021). Sensitive tumor cell line for annonaceous acetogenins and high therapeutic efficacy at a low dose for choriocarcinoma therapy. J Biomed Nanotechnol 17:2062–70. doi: 10.1166/jbn.2021.3175.
  • Chen C, Lv Q, Li Y, et al. (2021). The anti-tumor effect and underlying apoptotic mechanism of ginsenoside Rk1 and Rg5 in human liver cancer cells. Molecules 26:3926. doi: 10.3390/molecules26133926.
  • Chian S, Zhao Y, Xu M, et al. (2019). Ginsenoside Rd reverses cisplatin resistance in non-small-cell lung cancer A549 cells by downregulating the nuclear factor erythroid 2-related factor 2 pathway. Anticancer Drugs 30:838–45. doi: 10.1097/CAD.0000000000000781.
  • Deepak P, Kumar P, Arya DK, et al. (2023). c(RGDfK) anchored surface manipulated liposome for tumor-targeted tyrosine kinase inhibitor (TKI) delivery to potentiate liver anticancer activity. Int J Pharm 642:123160. doi: 10.1016/j.ijpharm.2023.123160.
  • Han Z, Cheng S, Dai D, et al. (2023). The gut microbiome affects response of treatments in HER2-negative advanced gastric cancer. Clin Transl Med 13:e1312.
  • Hong C, Liang J, Xia J, et al. (2020). One stone four birds: a novel liposomal delivery system multi-functionalized with ginsenoside Rh2 for tumor targeting therapy. Nanomicro Lett 12:129.
  • Hong C, Wang D, Liang J, et al. (2019). Novel ginsenoside-based multifunctional liposomal delivery system for combination therapy of gastric cancer. Theranostics 9:4437–49. doi: 10.7150/thno.34953.
  • Hong J, Li Y, Li Y, et al. (2016). Annonaceous acetogenins nanosuspensions stabilized by PCL–PEG block polymer: significantly improved antitumor efficacy. Int J Nanomedicine 11:3239–53. doi: 10.2147/IJN.S108143.
  • Hong J, Li Y, Xiao Y, et al. (2016). Annonaceous acetogenins (ACGs) nanosuspensions based on a self-assembly stabilizer and the significantly improved anti-tumor efficacy. Colloids Surf B Biointerfaces 145:319–27. doi: 10.1016/j.colsurfb.2016.05.012.
  • Hong J, Sun Z, Li Y, et al. (2017). Folate-modified annonaceous acetogenins nanosuspensions and their improved antitumor efficacy. Int J Nanomedicine 12:5053–67. doi: 10.2147/IJN.S134284.
  • Huang J, Chen J. (2023). Pharmacokinetics and pharmacodynamic evaluation of hyaluronic acid-modified imatinib-loaded PEGylated liposomes in CD44-positive Gist882 tumor-bearing mice. J Liposome Res 34:1–16.
  • Huang WC, Huang TH, Yeh KW, et al. (2021). Ginsenoside Rg3 ameliorates allergic airway inflammation and oxidative stress in mice. J Ginseng Res 45:654–64. doi: 10.1016/j.jgr.2021.03.002.
  • Jin X, Yang Q, Cai N. (2018). Preparation of ginsenoside compound-K mixed micelles with improved retention and antitumor efficacy. Int J Nanomedicine 13:3827–38. doi: 10.2147/IJN.S167529.
  • Li B, Qi F, Zhu F, et al. (2023). Nanoparticle-based combination therapy enhances fulvestrant efficacy and overcomes tumor resistance in ER-positive breast cancer. Cancer Res 83:2924–37. doi: 10.1158/0008-5472.CAN-22-3559.
  • Li C, Gou X, Gao H. (2021). Doxorubicin nanomedicine based on ginsenoside Rg1 with alleviated cardiotoxicity and enhanced antitumor activity. Nanomedicine 16:2587–604. doi: 10.2217/nnm-2021-0329.
  • Li H, Li Y, Ao H, et al. (2018). Folate-targeting annonaceous acetogenins nanosuspensions: significantly enhanced antitumor efficacy in HeLa tumor-bearing mice. Drug Deliv 25:880–7. doi: 10.1080/10717544.2018.1455761.
  • Lu H, Zhang Y, Ran S, et al. (2023). Ginsenoside Rg1 alleviates sleep deprivation-induced learning and memory impairment by inhibiting excessive neuronal apoptosis in zebrafish. Neuroreport 34:566–74. doi: 10.1097/WNR.0000000000001926.
  • Lyu X, Xu X, Song A, et al. (2019). Ginsenoside Rh1 inhibits colorectal cancer cell migration and invasion in vitro and tumor growth in vivo. Oncol Lett 18:4160–6. doi: 10.3892/ol.2019.10742.
  • Manoharan JP, Nirmala Karunakaran K, Vidyalakshmi S, et al. (2023). Computational binding affinity and molecular dynamic characterization of annonaceous acetogenins at nucleotide binding domain (NBD) of multi-drug resistance ATP-binding cassette sub-family B member 1 (ABCB1). J Biomol Struct Dyn 41:821–32. doi: 10.1080/07391102.2021.2013321.
  • Munot NM, Shinde YD, Shah P, et al. (2023). Formulation and evaluation of chitosan–PLGA biocomposite scaffolds incorporated with quercetin liposomes made by QbD approach for improved healing of oral lesions. AAPS PharmSciTech 24:147. doi: 10.1208/s12249-023-02584-x.
  • Nguyen DT, Nguyen TP, Dinh VT, et al. (2023). Potential from synergistic effect of quercetin and paclitaxel co-encapsulated in the targeted folic-gelatin-pluronic P123 nanogels for chemotherapy. Int J Biol Macromol 243:125248. doi: 10.1016/j.ijbiomac.2023.125248.
  • Ohta K, Fushimi T, Okamura M, et al. (2022). Structure–antitumor activity relationship of hybrid acetogenins focusing on connecting groups between heterocycles and the linker moiety. RSC Adv 12:15728–39. doi: 10.1039/d2ra02399g.
  • Peña-Corona SI, Hernández-Parra H, Bernal-Chávez SA, et al. (2023). Neopeltolide and its synthetic derivatives: a promising new class of anticancer agents. Front Pharmacol 14:1206334. doi: 10.3389/fphar.2023.1206334.
  • Peng H, Chen L, Deng Y, et al. (2023). Ginsenoside Rh2 mitigates myocardial damage in acute myocardial infarction by regulating pyroptosis of cardiomyocytes. Clin Exp Hypertens 45:2229536.
  • Schiller J, Zickermann V. (2022). Binding of natural inhibitors to respiratory complex I. Pharmaceuticals 15:1088. doi: 10.3390/ph15091088.
  • Silva JPN, Pinto B, Monteiro L, et al. (2023). Combination therapy as a promising way to fight oral cancer. Pharmaceutics 15:1653. doi: 10.3390/pharmaceutics15061653.
  • Tian T, Zhu YL, Zhou YY, et al. (2014). Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem 289:22258–67. doi: 10.1074/jbc.M114.588046.
  • Wang W, Guan F, Sagratini G, et al. (2023). Ginsenoside Rd attenuated hyperglycemia via Akt pathway and modulated gut microbiota in streptozotocin-induced diabetic rats. Curr Res Food Sci 6:100491. doi: 10.1016/j.crfs.2023.100491.
  • Xia J, Ma S, Zhu X, et al. (2022). Versatile ginsenoside Rg3 liposomes inhibit tumor metastasis by capturing circulating tumor cells and destroying metastatic niches. Sci Adv 8:eabj1262. doi: 10.1126/sciadv.abj1262.
  • Zhang R, Tang L, Zhao B, et al. (2021). A peptide-based small RNA delivery system to suppress tumor growth by remodeling the tumor microenvironment. Mol Pharm 18:1431–43. doi: 10.1021/acs.molpharmaceut.0c01253.
  • Zhu Y, Liang J, Gao C, et al. (2021). Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy. J Control Release 330:641–57. doi: 10.1016/j.jconrel.2020.12.036.